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ABSTRACT

Taylor series have a long history of usefulness in numerical analysis,
especially for the numerical solution of the initial value problem for systems
of ordinary differential equations. Since recurrence relations for
coefficients of Taylor series are well known, it is possible to automate the
computation of arithmetic operations and various standard functions with
arguments which are themselves series. If the language used for scientific
computation supports user defined operators and data types, then the
facilities built into the language compiler itself can be used to generate

_imanchAe-C-d, for the evaluatiomn la' fficients.) Examples of such
languages are Pascal-SC, Algol 68, and ADA (a trademark of the U. S.
Department of Defense) .iePascal-SC (Pascal for Scientific Computation)Aoffers
the user highly accurate floating-point and interval arithmetic, the latter
being useful for automatic computation of guaranteed error bounds. tis
language, series with real coefficients are introduced as type TAYLOR, anthe.
corresponding series with interval coefficients as type ITAYLOR. Source code
is given for the operators +,*-, *, /, ** and the functions SQR, SQRT, EXP,
SIN, COS, ASCTAN, and LN with arguments of these types and some other useful
functions and procedures. Int'eger, real, and interval constants are also
allowed in TAYLOR or ITAYLOR epressions. Suggestions for the implementation
of additional operators or functions are given. An application of Taylor
series and the methods of interval analysis t the solution of the initial
value problem for ordinary differential equations is made using types TAYLOR
and ITAYLOR. An analysis of the stability of this method is made, which shows

• that the recurrence relations for generation of the Taylor series for the
solution exhibit a mild instability which has no significant effect on the
values of the solution computed by analytic continuation.

ANS (MOB) Subject Classifications: 65-04, 65G10, 65L05, 65L07, 65V05

Key words and phrases: Taylor series, recurrence relations for Taylor
coefficients, automatic differentiation, numerical
solution of ordinary differential equations,
stability, error analysis, interval arithmetic

Work unit number 3 - Numerical Analysis
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SIGNIFICANCE AND EXPLANATION

The reliable numerical solution of the initial value problem for system of

ordinary differential equations is one of the fundamental problems of scientific

computation. Taylor series methods for this purpose have long been recognized

to be of theoretical importance, but their use in practice has been hampered in

the past by the need to differentiate the functions defining the system in order

to obtain coefficients of the series. Consequently, methods are conmonly used

which take linear combinations of function evaluations to be "as good as" Taylor

polynomials of some degree as approximate solutions. However, since recurrence

relations are well known for the Taylor series coefficients of functions

$resulting from arithmetic operations and standard functions involving series

arguments, it is possible to generate the required coefficients automatically

with a computer, and the user need only supply code for the functions defining

the differential equations. Many modern compilers allow user defined data types

and "overloading" the standard operators and functions so that these series

operations can be applied directly to vectors consisting of the coefficients of

the Taylor polynomials involved. Examples of such languages are Pascal-SC,

Algol 68, and ADAm (a trademark of the Department of Defense). Pascal-SC offers

many advantages for numerical computation, since it is based on accurate real

and interval arithmetic for vectors as well as scalars. In this report, source

code is given for generation of both real and interval valued Taylor series, and

simple programs illustrate the application of each to the numerical solution of

ordinary differential equations. In these programs, both the order of the

method being used and the step size of the integration are under the control of

the user. Advantages of interval computation include the ability to study the

range of values of solutions depending on ranges of initial conditions and

parameters in the equations, and to obtain rigorous bounds for solutions in

applications such as aerospace in which reliability is important. In this

report, interval calculations are used to investigate the stability of the

process of generating the Taylor coefficients. For rapidly converging Taylor

series, instability in the generation of the coefficients has little effect on

the computed values of the solution because as the relative error increases for

successive terms, the terms themselves become smaller. Hence, their

contribution to the error of the sum is insignificant.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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AUTOATIC &bOU 01 TAYLOR MR18 IN PACALC:

IBASIC OPZRTIIMS AM PLICATIOS TO ORDINARY DZFW3TmIAL SWATZONS

George Corliss* and L. S. hill *

1. Taylor series. noIlvMnmiSI. and forms. A fundamental tool of nimerical

analysis 1 the expansion of a real function f of a real variable x into a Taylor series at

x - x., which gives the expression

(x) - Z f l - X) /(-1),

valid for Ix - x I ( p, where p is the radius of convergence of the infinite series on the

right-hand side of (.1). Of course, in actual numerical computation, the Taylor

polynomial

(1.2) £ n()x) - ( )(-1)

is used in place of the infinite series. This results in the truncation error

(11.3)1 lnlf'Vx O ) = f(x) - f (x) f (n) (lx - xonll ES Re

where X denotes the interval X ( an(x.x 0).max{x.x0)], and the remainder term Rnf,x0lx)

is expressed in Lagrange form. This approximation of f(x) by fn(X) gives rise to a problem

Department of Mathematics, fatistics, G Computer 8clence. Narquette University,
Milwaukee, Wisconsin.

Research sponsored in part by the United States Army under Contract No. DA0R29-40-C-0041.
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of error estimation %hich can be solved by the methods of interval analysis. If pin) to as

interval inclusion of the real function fl. then
I

(1.4) fix) - fnt(x) - 3n(f,xolx) • Ia(z)(x - xOn/all

this allows automatic computation of guaranteed error bounds by the use of Interval

arithmstic ([11, !131.

In order for Taylor series methods to be useful in scientific computation. it must

be possible to automate the calculation of the normalised real Taylor coefficients

(1.5) cli + 1) - f(x 0 )(x - xo)il, i ,

and the corresponding interval quantities

(1.6) C(i + 1) - r(i)(X)(x - SO)i/ 11, i - 1,...,n-1.

These calculations can be carried out by means of well-known recurrence relations (1),

(121, 1131, (161 for functions defined by subroutines or expressions involving arithmetic

operations and a variety of standard functions for which library subroutines are

available. A very important application of automated generation of Taylor series by

recursion is the numerical solution of the initial-value proble for ordinary differential

equations. That is, it in required to find y - y(x) - (yl(),Y 2 (x),...,Ym(x)I such that

(1.7) Y1 a f- (xY). YI(X0) - . i Y,0,

for values of x in an Interval containing x0 [1], (31, [61, (121, [13).

Another application of the methods in this paper is to the automatic generation of

interval inclusions of real functions by means of their interval mean-value and Taylor

forms (121, (131, (191. Suppose, for example, that f(x) is a real function, such as

-2-
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(1.6) f(x) - (x + 3)/(x2 + 2),

which can be evaluated by the corresponding exprasion

(1.9) 1 aw (x + 3)/(x*'2 + 2)o

in a Pascal-SC program. An Interval inclusion F of f an am interval X. for which

(1.10) fix) - fim) I x a x} c Fi)

can be obtained simply by declaring the variables V and I to be of type IMMUL, and then

evaluating the expression corresponding to (1.9),

(1.11) s - (x + 3)/(X**2 +2)

using interval arithmetic, a standard feature of Pascal-SC [23). An inclusion obtained in

.+ this way may be too coarse In the sense that F(R) is a much larger interval than needed to

contain M(X). Zn this came, an Interval inclusion provided by the man-value form

1.12) FOX) -fx) + 1'CZ)(X ), x 0 X,

can be better, particularly If the width of X is not large (121, (131. (19). in (1.12), 1

P !enotns an interval inclusion of the derivative ' of to r'(Z) is obtained automatically by

* evaluating (1.11) with V and I of type ZATWR, as will be enplaised below. Interval

ioclusions of f are also provided by Taylor foma of higher order (191, in general,

n-1
0.13) -f x)-X X /it (n)(2)(- x 0 X.
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Theme forms can be generated automatically from the expressions (1.9) and (1*11) by the me

of types TAILOR and XTAYLOR, respectively. Secursive generation of real and Interval

Taylor coefficients makes possible an adaptive method for calculation of interval

inclusions of real functions, In which n Is increased until rn(z) includes

1 (ni(X. It I& also possible to reduce the vidth of computed Inclusions by making we of

the fact that the intersection of interval inclusions is likewise an interval inclusion.

Previous implementations of automatic generation of Taylor Coefficients in omputer

languages such as FORTRAN have used interpretation (201 or pre-campilation (10) to activate

the necessary subroutines (161. Zn more modern languages, the compiler Itself can be used

to produce the necessary routines, leading to a saving of programing effort and an

Increase in clarity of the source code. The use of Pascal-SC, a language of this type,

will be explained In the next section.

2. Pascal-SC. The method for automatic generation of Taylor series given in this

report is based on computation with the coefficients of Taylor polynomials of arbitrary

length, considered as specific mathematical entities. This requires that the language

support i) user defined data types, as do descendents of ALGOL-60 such as Pascal and ADA

(ADA is a trademark of the U.S. Department of Defenee): and ii) user defined operators, as

do ALGOL-6 and ADA.

Pascal-SC (21 is an extension of Pascal which provides both user-defined data types

and user-defined operators. This paper assumes a modest familiarity with standard Pascal

(8]. For the remainder of this Section, we outline some of the extensions which make

Pascal-SC well suited to the applications in this paper. The reader who wishes to cmlt the

discussion of programing language issues may proceed directly to the definition of the

data types TAYLOR and ITAYLOR in Section 3.

Pascal-SC was developed with the needs of scientific computation in mind. It in an

implementation of Jensen and Wirth Pascal (8) which also provides intervals, complex

numbers, complex intervals, as built-in elementary scalar data types (231. A full range of

standard operators is provided to manipulate the elementary scalar data types, as well as

I' -4-

iV



vectors and matrices built of these types 123).

Standard Pascal supports user-4efined data types built from elementary data types.

This feature will be used to 4efins variables of type TAiLOR and ZTATLOR (interval Taylor)

in section 3.

Pascal-SC allows the user to define operators. Nost computer languages allow

programmers to define functions, subroutines, or procedures, but except for AlL, the

languages most often used for scientific omputation require that such user-defined

functions be called using a prefix notation (eg. SXV (X)), while built-in operators are

called using an infix notation (eq. A + 8). Programmers can define operators in Pascal-C

to extend the language in a uniform way, retaining the failiar infix notation for

operators whose operands are variables of user-defined types (eg. A + 3. where A and 3 are

variables of type TAYLOR).

Operators, functions, and procedures in Pascal-SC can be overloaded. That is, the

name of an operator, a function, or a procedure can have different meanings, depending on

the type or number of its operands. For example, the standard Pascal or FORTRAN operator

IW is said to be overloaded because "A + 3V for integer variables A and a has a different

meaning from "A + 30 for real variables A and B. The support of Pascal-SC for overloading

of user defined operators is essential to the uniform extension of the language because we

wish to define the meaning of *A + S" for variables which represent Taylor series with real

or with interval coefficients.

The support of Pascal-SC for user-defined operators and for overloading is very

simllar to that provided by ADA. ADA's PACKAGU concept would allow a more secure

implemetation of data abstractions [91 for real and interval valued Taylor series. The

operations on Intervals, however, also require support for directed rounding of floating-

point resats in order to guarantee that the desired answer is contained in the interval

computed. The early impl~entations of ADA do not provide an accuracy of floating-point

cfmputations which can compete with Pascal-sC.

Pascal-SC teatures a highly accurate arithmetic based on a general theory (III for

real and oomplex numbers, real and complex intervals, and vectors and matrices over these

I4



types. operations on floating-point numbers are rounded to the closust floating-point

number to the treresult, or upward or downward to teclosest neighboring floating-point

number under the control of the mar. This accuracy mnets the proposed X=3 standard for

floating-point arithmetic [141. in addition, scaler products of vectors

(2.1) CAPA3UU)-E Ai*5i

are calculated with the same accuracy (to the closest floating-point number), and with the

same options for rounding 123).* A sufficiently long accumulator isMaed.to-stee.-- - -

Intermediate results In the evaluation of the scalar (or inner) product. This capability

can also be used to obtain results of the mase high accuras;y in evaluation of a given

arithmetic expression so that 1.02499 + 1.03-99 - 1.03+99 yields 1.03-99.

3. * ypes TAYLOR and ITATLOR. We wish to provide the developer of scientific

software with a set of tools with which Taylor series methods can be implemented easily for

a variety of numerical problems. The ability of the computer to perform formula

translation is used. Compilers since the first FORTRAN compiler have produced machine code

4 for the evaluation of an expression such as

(3.1) P -(XV + 813(1 + 4.0) (3.0 **2) + 6.0).

This is done by analysis of the expression and application of the rules for evaluation of

formula@. If the rules for differentiation or recursive generation of Taylor coefficients

are applied in the mss way, then code for the evaluation of the corresponding quantities

results [161. in this way, fast and Inexpensive operations performed by the compiler avoid

the overhead Involved In Invoking symbolic differentiation software. This leads to a mr

efficient Implementation of Taylor series generation all the way from Initial coding

throuqh program execution.

The normalised Taylor coefficients of a function fix) expanded at x x0 are

T6

k



defined by

(3.2) f.YC[I + 1) f~y1)(z)t 1 /XI t x - xg, X 0#61,2,...

DIR
(3.3)- 2 nN) z f.VC (K1

where DIN Is the length of the truncated series which Is actually stored. This real at

Interval vector of normalised Taylor coefficients In the basis for the data types IMIW3

and mITATZ. For the remainder of this paper, the term Oseriesu Is used to refer to the

Taylor polynomial given by equation (3.3) or Its Interval analog.

in what follows, the general rule will be adopted that all variables or euxpressions

* ~of the scalar types INTSU YOM1, or IUY3RYM. are treated as constants for the purposes of

dif ferentiation.

* To form the real data type TRYWLO, the DIN normalized Taylor coefficients in (3.3)

are stored as a vector of floating-point nubers. The appropriate declarations In Pascal-

SC ares

COPWT DIN- ns ( Uer supples a

TD3 hI~hI - .. DKI

(3.4) W3CTQR -ARAYtDM1173 OFP RAir

TAILOR - 3300W LWE a DNTVPUr

T :3311.9

le :RY3CTR Dg

Those declarations are the same as those given In 11. except for the field named

uLOM. Let F be a variable of type TAYTWU (declared by: VAR rt TAY LOR),* then INUY

denotes the actual length of the truncated seCIes (1 4 .11- fl < UIK). *t may happen that

-7-



F.LKUQTH < DIN if P is being built up recursively, if F has been defined by term-by-term

differentiation of another series, or if F has been defined as a quotient of two series

both of whose leading terms are zero (see Section 4.2). This field has benadded to the

record for type TAYLOR given in [I] for internal documentation and so that 1) only series

terms actually used need to be processed, and i1) V'Hopital'a rule can be applied to

certain indeterminant forms 0/0 which may appear.

The normalized Taylor coefficients themselves are stored in the array of real

numbers named C, that is,

(3.) .~cK1- (K1)(xo)x - z 0 )(C"I)/I. K = 1,...,D!rN.(3.5) F.TG[E]-1(-I(0(

The size of the step being used for expansion is F.T - X - X0 . Series are

generated using a fixed step le for which the series might oven be divergent. The series

for F at a different point Z to readily computed at a cost proportional to DINt

(3.6) F.TC(K] :- F.TC[KJ((Z - X0 )/V.T))**(K-I); X = 2,...,DIN,

while the cost of series generation is usually proportional to DIN
2 . 

The presence of the

stepaize in the record also makes it possible to check that an operation is not being

performed on two series with different stepsizes.

One of the important problem to which interval analysis has been applied since its

beginnings is the problem of controlling the truncation error of Taylor series methods

(121. Hence it is natural to support Taylor series whose normalized coefficients are

intervals. The appropriate declarations in Pascal-SC are

.- 5-



CONfT DM nr (useresupplies n

!1P3 DIN27M - 1..DINI

INTERAL - RUCORD INF, SUP Mtl REA UD#

(3.7) IVECTOR - ARRAT[DNYPU OF INTZXVALi

ITAYLOR - =ECORD LENGIM DZNTYPEs

T R1AL i

TC .IVCTOR WAD s

Tbe types ITATLAN ahd TAYLOR are the earn, except that the normalized coefficients of the

former are intervals. The same recurrence relations are used to generate series of each

type.

The stepeize T remains real.* This corresponds to bounding the range of values of a

function f at one real number x. There are some applications for which it is necessary to

bound the ragep of f on an interval, as in (1.13). in this case, one can take T - I and

form the normalized coefficients by computing the needed powers of MI - x) by Interval

* arithmetic, or else introduce ak new data type in which TIis of type INTRVAL, and a set of

operators corresponding to those given here.

The declarations (3.6) and (3.7) of types TAYLOR and ITAYLOR, respectively, are

basic to the discussion of operators in the next section.

4.* Implementation of operators and functions for types vTLOR and ITayLOR. As

Indicated above, the ability of a compiler to perform formula translation can also be used

to produce machine code for the evaluation of the normallaed Taylor coefficients 1), 131,

[10), 112), [13), 11, 116), [18). If the value of function f is obtained by a

composItion

( . )f - f I0 0 a. fa

of a finite number of t.lementary functions, then derivatives of f can be computed by the



chaih rule from the derivatives of fl .. .fi. This is a tedious and error-prone calculation

to do by hand, but the computer does it not only rapidly, but also accurately.

Recurrence relations for calculating the normalized Taylor coefficients for the basic

arithmetic operations and for the elementary functions are well known (see [16), for

example). Hence machine code can be generated to expand the Taylor series for f at any

point x - x0 at which f is analytic. These recurrence relations are both more efficient

and more accurate than numerical differentiation [17). Recursive generation of the series

may be mildly unstable [6), but the interval-valued Taylor series introduced in Section 3

can give guaranteed boundm for the effect of any such instability. In Section 6, we show

that any instability in the series generation has no significant effect on the series

0aM.

Iell (18] outlines an approach to abstract data types for real and interval-valued

Taylor series. Our implementation generally follows that outline. This report discuases

extensions and some of the implementation details. The code is Included as; Appendix C of

this report. First of all, in order for expressions to be evaluated correctly when they

include variables of type TAYLOR or ITAYLOR, the arithmetic operations and the standard

functions must be defined in a manner which incorporates the appropriate recurrence

relations for the generation of the normalized Taylor coefficients. Our implementation in

Pascal-SC attempts to follow the principles of uniformity, compactness, locality, and

linearity for a good programming language design [22). Next we attempt to justify

significant departures from two of these principles.

The principle of uniformity in programming language design says that the sae things

should be done the s way whenever they occur. Thus "A + B" means "add", regardless of

the types of the variables A and B. The other arithmetic operators enjoy the same

uniformity, but the standard functions do not. For example, exp(x) is RIPCX) if X is REAL,

IBXP(X) if X is INT'RVAL, TCXP(X) if X is TAYLOR, and ITXP(X) if X is ITAYLOR. LXP and

ZIXP are built-in functions which were designed to suggest the type of their operand and

result as an aid to reading the code. That is especially useful since Pascal tends to

violate the principle of locality by placing the declaration of a variable far from its

~-10-
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use. we chose to maintain uniformity of our extensions with the built-in functions. it Is

important to be able to determine the type of a variable, end it would be quite non-uniform

if ZBXP were the only function in this family shich requires a prefix.

The principle of locality suggests that all relevant parts of the program are found In

the same place. We attempt to follow this principle In each of our program units, but the

use of the global constant DIN and the global types RVUtOR. ZVUCTOR TAYLOR. and ZmuYLOa

is a violation. The we of such global types needed in the headings of the operators and

functions in very difficult to avoid. Their use has the advantage that all of the

information about the length of the series to be used is located in only ce place,

CON8Y DIN - n, so it i easy to change.

In roughly their order of importance, the goals of this Implementation ares

o Consistent set of software tools.

o Correct answer whenever possible.

o Useful error messages when no correct answer is possible.

o Readable code for future adaptations.

o Ifficient execution.

o Compact code.

For example, this implies that although efficient, compact code is sought, efficiency and

compactness are sometimes sacrificed for higher goals. in particular. It is important that

other programers be able to read the code, perhaps in order to Improve its efficiency.

Binary operations with one operand of type TAYLOR may appear with the other operand of type

IWMGRR, REAL, or TAYLOR, and the two operands may appear in either order. Similarly,

binary operations with one operand of type mWX may have a second operand of type

eIM Re INTYWAL, or XTAYLOR. The operators built into Pascal-C do not support the

mixing of PEAL and INTV AL operands because real numbers are viewed as being potentially

inexact (23]. Our extensions of the arithmetic operators to interval valued Taylor series

-- 7-
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maintain uniformity with this convention. This is recognisd, but not explicitly stated in

[18]. If a programmer Is certain that a real nuwber X is exact so that it may safely be

mixed with an interval, IWM (X) converts X into the interval El, I].

The library of subroutines to support computations with types TAYLOR and ITAILOR

includes operators (s,-,o,/.*), special power functions (oqr, eqrt, ep), standard

functions (sin, coo, In. arctan), and additional functions (tan and the Runge function

f(x) - 1/(I + x 2 ), to which the user can add more functions and procedures as desired. The

analytic operations of term-by-term differentiation of real and interval series, as well as

term-by-term differentiation of interval series are also provided by mans of functions for

the given purpose. There is also a set of utility functions and procedures to perform

frequently needed tasks, such as reading and writing real and interval series, taking the

midpoints of the coefficients of an interval series to obtain a real series, and so on.

The following abbreviations are used in the code to make It as easy as possible to

locate a desired operation with any text editors

K INTWBR

R RIAL

I INTRRVAL

T TAYLOR

IT ITAYLOR.

Using these abbreviations to distinguish between Instances of overloading, the operators

which are needed to support variables of type TAYLOR and ITAYLOR ares

Addition (Section 4.1):

+ TIX + T, T + I, R + T, T + R, T + T

+ IT& K + IT, IT + KI~e + IT, IT + 2, IT + IT

Subtraction (Section 4.1)s

- T, K- T, T- K, R- T, T- R, T- T

4 -12-
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IT,. K-IT, IT -K, a-IT, IT-U, IT-IT

Multiplication (Section 4.2)s

K' To T K, R To T Re T t

K'IT, IT Re, I IT, IT'1, IT IT

Division (Section 4.2)s

E/ To T E, R/ To T/Re T/ I

K/IT, IT/K. I/ofIT, IT/I, IT/ofIT

Power (Section 4.3):1

X" , R Re K Re R"R

I K, K 1 , 1 1

K To, T"I, R* 'N, T"U Re " T T

K"IT, IT"K, I'IT, IT** , IT IT

Implementation details of each operator are discussed In the Sections shown. Pascal-SC

provides no power operator, so "* eat be defined for the scalar types before It can be

extended to types TAYLOR and ITAYLOR. The discussion of "* in postponed to follow the

Introduction In Section 4.3.1 of special cases of exponentiation: inqr. sqrt, and exp.

The priorities of the operators given In this Sectic. are:

ighests Unary addition and subtraction, functional

Multiplication, division, and powers: t I

Lowest: Binary addition and subtraction: +,-

k .In particular, note that the priority of "* relative to * and / Is different than in

FOUTVAN.

For types TATLO and ITATLOR, Implementation has been provided for the standard

functions which are supported In Pascal-SC for types INEnER REAL, and INTERVNl. They

are,

- 3-
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8pecial pmers (Section 4.3.1)li

T9Qt ( T),I TBiRT (T), 'lid T)

ITSQR (IT), ?UQWN (I), (IT)

Standard functions (Section 4.4)v

T161 ( T), IvO ( ) V I T Y), A CU (T)

I*LBIN (IT), ITCO8 (IT), ZTM (IT), ITARCTJUW (IT)

Additional functions (Section 4.5)z

TRUNGS ( T), TTNM( 'T)

IYRNSGN (IT), ITTAU IT)

Differentiation and integration (Section 4.6):

IDIPPI T), TIiTORM T)

ITUK PC (IT), IUTQRLM;( IT)

Miscellaneous utilities (Section 4.7)1

VMULL, T ID MZMO( T), T XI COhSANT( T), XTXDPVIT),

IVN L,, IT Z1T ZO(IT), ITX D= coMTANT (I ), aTE SERUES (C ),

RnZA v Lx IM')(xT) , WIT I VAZ.( 1), WRITS Z TMAL SERIENS CT)

4 brief description of the method for introduction of user-defined functions will be

given in Section 4.5. Some implementation details of the operators and functions will nov

be diecussed. The recurrence relations are taken from (16). In following the conventions

of Pascal-SC. minor differences from the indices found there are due to our starting the

series indices at 1 Instead of starting at 0. In each Section, operations involving the

scalar types are discussed before turning to types TAYLOR and ITAYLOR. The Pascal-

source code for each of these operators and functions, as veil as for utilitiee which they

require, is included as Appendix C to this report.

-14-
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4.1. ,addition and subtractioa. Tbe teo addition and ten subtraction operators are

quite straightforward.

Additions

+ T* a Y. + + K, a + T T .+ T+ T

+IT, T K*. I YT+K. 1*Y, XTY*X KTYrT

Subtraction

o- - 7. 7-1, T- T, 7-. t 7- 7

-IT, i - ZT Y-K, - T, K?- . T IKT

Addition and subtraction of a constant alters only the value of a variable, sot the values

of any of its derivatives. Interval constants oly require that the appegqia t built-in

interval operator be used. Otherwise, addition or subtractioa of earies 1l dme term-br-

tern.

Zf s " ?+G, then

(4.1.1) U.IR) ,- V.TCjKJ G.'cKtI. K - I .... .o.

4.2. Nultiplication and Division.

Multiplications

x T, T!K. K a T, 1T K, To KT

4multiplication and division of two Taylor series is Ios by the well-knowne Zeibas

rule for the Taylor coefficients of a product 1161.

-17-
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4

ii
Ift V *G then

K|
14.2.1) U.'I[]K1 - K V.2CIK*G.CI-I 11, K * ,.,Z

The scaler product of two vectors is evaluated in Pescal-SC by the standard function ECAL?

to the closest floating point nmber. Vast series multiplication techniques war not used

here because

aIIn any applications of *, the series for 0 Is being generated

recursively. That Is, the variables r or 4 involve U itself.

* The earecy of CALD would not be available.

o The speed of SCAL , especially when seme term are sero, makes!

these techniques les attractive.

Sultiplicetion or division of a series by a constant is done tern-by-tern. Division

of a constant by a series is done by gemeration of the series for C/F(x).

Divisions-* OKlln (/ ?, YI/K, R / ?, T /RI, T / T

KT , It /I , z T, 1?/ , T/ zT

If U 1- r 0. them U * 0 FV and Leibnis' rule applieos

U,5C(1] - V.YC(1J / G.yC1):

for K .

(4.3.2)

.s(R1 - C z- U.YC!2J*Q.TctK-z.*1) ) / o.icti],
-1

t .1*.



If 0(XO) - 0.C-I1] - 0, then we attempt return the correct answer whenever possible.

if 7(x9) - J.CIII is also 0, then we can apply l'Uospital's rule becausid the series for

both Ir and Q are known. riTfcml - re(x(,) / 01(o - ?.!V(2) / G.YC(23, If this quotient

exists# but V 0I r, / G, as functions.

If V S- P / 0, and FixG) - 0(xO) - 0, then let

(4.2.3) v.YC(Ki s r.7C(*ii VifciciJ t- c.TcwiR+i x - i,..DN.

then,

(4.2.4) U I- V /V

Thus, l'Hospital's rule is implemented as a recursive call to the division operator with

operands whose series length has been reduced by on&. This approach would not be possible

In a language which does not support recursion. further, cases in which the series for

* both f and g have several leading zeros are handled automatically by the language.

L'Uopital's rule is applied in a similar manner when a constant quotient or livisor

Is equal to zero.

4.3. Power Operators. The power operator 'defined by F G G toF i not

standard In Pascal or Pascal-SC, but can be Implemented In the latter for date types for

which it Is meaningful by the use of the operator concept. coding of ** is simplified by

the Introduction of a set of basic power functions. These are implemented separately

" for uniformity with Pascal-SC which provides the"e functions

for standard data types,

" to provide tighter bound* for interval operands, and

0 for efficiency.
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4.3.1. -NDOial Power Funtion. This set of functions consists of the

squar, square root, and natural exponential function Of variables of types YTLOM and

!TAYLOUS

IMSR (IT), Z!SQWN (IT), IT=1 (IT)

Theme functions are called by the Operator ** when appropriate. For example, if I if Of

type mTAiWR, then both X ** 2 and X I IMT( 2.01 are actually performed by a call to

ITQR WXi The use of this function rather than 1 * zIis important in Interval

computations, since, for example, (_1,_112 _ (0,11 while (-,-1tj *(1-i-(14

Further, the squaring functions MUR end rTIQR are twice as fat as the multiplication Y

Y for variables of the corresponding types.

The recurrence relations to generate the series terms for these functions can be

derived easily using Leibniz' rule. The squares of real and interval Taylor series are

computed as follows.

If 0 sqr(F), then Leibnis' rule for a product can be shortened tos

For 9 - 1, ... , DIN,

X DIV 2
(4.3.1) u.TC(Kj - r.Tc(IIr.Tc(K-i*1J

if X Is odd, then U.TC(R] - U.TCER) + UQR (F.TC((K+1)/2j).

The inner product contains only TRUMC(/2) terms. If F Is of type I1'ATLOR and Includes

negative numbers, then 11603 MF provides tighter hounds than does F *F. The IR

functions are named TSQR and ITIQM to indicate the type of operand accepted and value

returned.



a similar function was written for CUM. Its ismtions had length WUK3) but

they were nested to yield a cost proportionul to DIN3 . CUM Is amt Included In the library

* because P *Q 8 I) M1i faster.

The functions In the next met calculate square roots of real and Interval Taylor

* variables.

If 0 s- SORTM), then VU* U - P. The algorithm runa as fellows

U-fC111 son SQRf (?.TC(1))

U.TC12) s- V.TC12) / Q3 * 0-TCt11)

for 1u 3, ... , DIN,

(4.3.2)
K DIV 2

if I is odd, then PROD t- PROD + 893 (U.YC(14t)/21)1

U-yc[xJ 2- (rFiTc[i) - PROD) / (2 Is U.1'c(1).

if IF(xO) -0. and P Is not a constant series, then $93! (7) cannot he computed unless P io

1 the constant 0, because 1' Cu0 is not defined. The amI functions are namd MIT3 and

rrSQRT to Indicate the type of operand accepted and value returned.

The natural expontial functions (base - a) are row defined for types TAYLOR and

IThYLOR..1If 9 %KV (3), then U1 P .'. Ibis gives the algorithms

(4.3.3)

X-1

Although this formula would appear slightly simpler with the change of Index J itK - 1, it
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was implemented in this way so that the U.TC terms remain stationary in the inner product

as K increases. Thus, only the vector F.TC needs to be "reversedw. The UAXP functions are

named TEXP and ITP to indicate the type of operand accepted and value returned.

4.3.2. The Operator **. The family of power operators * seems to be the

moet difficult to implement "s suggested by (5. Vone of the operators are especially

difficult, but there are many minor details to be considered. The implementation of ** for

types TAYLOR and ITAYLOR is based on the standard power functions above, and the power

operators ** for the scalar types Ib1 4GR (W), RZAL (R), and INTRVAL (I).

Scalar Powers:

X ** K, R K, 9 R, R R

I " K, K , I I " I

Integer powers are implemented using repeated squaring. Real and interval powers

which fit no special case are computed by P ** G - RIP (G * I(F)). We have not attempted

optimal implementations of the scalar power operators because it is hoped that they will be

j provided as standard operators in a later release of Pascal-SC, an approach that is

especially attractive for interval operands because the interpreter hides information from

programmers which can be used for correctly directed roundings.

Real and Interval Taylor Powerat

K T, T K. R" T, T R, T' T

K •oIT, IT •eK, I •*IT, IT Z, I, T •IT

The power operators for a constant to a variable power follow the pattern of TIP or

ITUP, as appropriate. A series which represents a constant (only its first term is non-

zero) Is handled as a special case for accuracy (especially for interval series) and for

efficiency.

-20-
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Le operators T X and 1 X take care to return tbe , Oi.!at .i .W WneVe that

to possible and to produce an appropriate erorx message When it if not possible. The

resolution of various cases is shown In Table 4.1.

p. Upoments 1 2 (C0

%; Dase.TC - 0 Undef. - 00 -@0 idet. |
II I I I

3an.YC() - 0 I I - 3*53 I Sl (3*13) I Dy mtt ss. I
I I I I I
I I I,ase.TC11) - 0 1 I =

- M 3 (SM) By Mse rede

a• I RA IQ BZ yrcrec

Table 4.1. Resolution of Cases for e.

Consider a series whoe first tearm is zero, but which has other term which are no-

zero. Raising such a series to a negative power is undefined because it Is equivalent to

dividing by zero, but raising such a series to the power 0 defines a function which 1

identically equal to 1, except for a removable singularity at x - xO. Neane it is

appropriate to give I as the answer. Raising the series to a positive integer power is

Implemented by repeated squaring because the recurrence relation which to most often used

(20) requires division by 3SAS.TC[1]. which Is sero.

Ilhe special cases of an exponent equal to I cr 2 are mingled out for individual

treatment in order to achieve the maximu possible accuracy (especially when the base Is an

interval series) and for efficiency.

Incept in the special cases shown In the table, If V - P ee, where B Is of type

INTOUR, then F * 2. 3 U ' F'. This gives the algorithm

-21-



U.TC om f:

U.c11J 8- I.TC111 so

(4.3.4) Mor K :- 2 to DIM,

V.Tc K] a
m ( (3((-I) - I + 1) * U.NC[Im  V.IC(K-1.iJ) / ((K-1)r.(zIj).

The integer exponent appears in the recurrence only as a multiplier, lence the speed of

this algorithm is nearly independent of the size of the exponent. That Is why this

algorithm is preferred to repeated squaring.

The operators T 00 R and IT ** I are similar to T ** K and IT .* K, respectively,

except that the additional special cases of an exponent equal to 1/2 or to an integer are

handled.

The operators T ** T and IT ** IT are included primarily for completeness, the authors

have never seen a differential equation containing a variable to a variable power, for

example. Perhaps any such problems which arise are at once simplified by logarithmic

differentiation. With the tools described here, it may be advantagious to attack the

problem in its original form.

Within the operators T ** T and IT 00 IT, the cases in which either the base or the

exponent series represent a constant function are treated as special for reasons of

accuracy and efficiency. Otherwise, 1 ** G - U (C * LI ()), using TKXP and TM or ITEXP

and NLN, as appropriate.

4.4. Standard Functions. There are many useful library functions which could be

provided. We have chosen to Implement the functions which are built into Pascal-Sc for the

standard scalar data types, and a few others. Additional functions can be added as they

are needed by following the models provided by this report. In addition to the standard

power functions of Section 4.3.1 (which include EXP and IKXP), other standard functions

implemented for types TAY)R and ITAYLOR are

'4 -22-
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TSINl T)s TO( T)e TMi (T). TAFCTIl (T)

ITIN (IT), ITCO8 (IT), (). ( TITU I (IT)

If U- sin (F) and V - coo (F), then U' - V * 7' and V ' * F'.

U.TC11] I- arm (v.TC(1), v.Tc!11] - coo (V.TC!1s)M

for K C 2,...,XN,

K
(4.4.1) U.ic(]C] ,- ( I v.TCI] * r.TC[K-I + (K-!)) / ( X-1) .

K
V.Y[C(R ,- - ( I ..TCIZ * F. T[f-X+l3 * (K-I) ) / (K€-1).

1-2

The SIN and Coo functions are named TSIN and TOOS or ZT8Z and ITOOG to Indicate the

type of operand which they accept and value they return. Since the series for SIN and COO

are always computed together, the library also contains procedures T SIN Coo and IT BIN Coo

which return both the S1 and CO of variables of type TLYLOR and ITA0IO, respectively. in

the same call.

If U t- in (F), then U' *F - F'.

U TC01 :- L (F.TCIl!)s

(4.4.2) for K -2,...,DIN,

U.TC[X ,= (P.TC[K) - ( Z U.TCtIJ * F.TCIt-+1I * (1-1)) / (K-1)) / v.wTC).
1-2

There in a misprint in this recurrence relation in ((16]. p. 42), but its implementation is

straightforward.
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If U s- arctan (F) and V s- 1 / (I + F2), than U v * F'.

V x- I / ( I + SQR () )I

U.TC[11 z ARCTAM( .TC )I

(4.4.3) for K 2,...,DIN,

K

U.TC(KJ ,- ( E v.Tc(z] * F.Tc[K-z+! * (K-1)) / (K-I).
1-2

Since the series for the Runge function V(F) ((71, p. 78) is required to compute the

series for arctan(F), functions TRUNGZ and ITRU=GK are included in the library along with

the functions TARCTAN and ITARCfAN.

4.5. User Defined Functions. if a programmer requires an operation or a function

which is not included in this report, the requirement can be net either by a composition of

operators and functions which are already provided, or by a careful derivation of the

necessary recurrence relations following the models in this report. For example, the

tangent functions TTAN( T) and ITTAN(IT) are implemented essentially by

(4.5.1) TTAN( T) i- TSIN( T) / TCOS( T), ITTAN(IT) :- IT8IN(IT) / ITCOS(IT),

respectively in the set of additional functions provided in the library. The tangent

functions can also be implemented directly by recurrence relations, using the fact that y -

tan(x) satisfies the differential equation

(4.5.2) yf o I + y
2
, Y(x0) - tan(x0 ),

(121, 113]. Thus, for U t- TTAN( T), for example,

(4.5.3) U.TC(I1 a1 TAN(T.TC[l]), U. 'C2] - CI + sQR(T.TC[II)) * T.T.

-24-
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fho succeeding ooefficients can be obtained in a simple way from the recurrence relation

(4.3.1) for TIQR(M Y, and ITTAM(lT) is computed analogously.

The unge fuetion f() - I / (I + X2). which is an auxiliary function for the "eries

expansion of the aratangent, is Implnted in the Library by

U I- SQ(IT)p

(4.5.4) a.YC(11 ,- I + UT.!cj11

ITRUMIG is computed similarly.

4.6. Differentiation and Integration. Functions which return the results of term-

by-term differentiation and integration of TAYLOR and ITAYLOR series are also provided.

For series with I < LRG! ( DI I differentiation decrease* the length of the series by

ones

(4.6.1) U.TC[K] :- T.Tc[K + 11 * RATIO / (K + 1), K - 1,...,T.LW4GTH - 1,

where RATIO - 1 / T.T if U - TOPF (T), and RATIO - I / IWTPT (T.T) if U - ITDIFF (T).

Integration results In a series with its first coefficient set to 0 and its length

aIncreased by ones

(4.6.2) U.TC[IK &- T.TC[K - 11 * RATIO / (K - 1), X a 2,...,T.LZWGI!,

with U.TCCIJ - 0 and RATIO a T.T for U - TIWTGRL(T), while U.TC[I) - INTPT(0) and RATIO

INWT(T.T) for U a ITITGRL(T). The result of integration of a series of length DIN will

be truncated to length DIM.

-25-
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4.7. Kiscellaneous Utilities. Same useful functions and procedures are provided

for convenience. These are the transfer function TWIOPT (IT), the special functions

VWULL. lYOWULL. the comparison functions 7IWENT 3330, T IDWT CONSTANT. IT ID=2 3330,

IT IDSW ONTANT, and the Input/output procedures WURIT IMMMRAL (1), WRI2E 133S3 M,)

READ INTERVAL 353333 (IT),* WRITE INTMNAL 833338 (IT).* The purposes of moet of these

utilities are indicated by their name.

The transfer function 31101T (IT) forms a TAYLOR series from a series of type

ITAYLOR. The coefficients of the result series are the midpoints of the corresponding

coefficients of the interval series.

The paramterleas functions VMKILL, IVPRNULL yield zero real and Interval vectors*

respectively, of length DIN. They are standard Paecal-SC functions 123).

The comparison functions yield the BOOLEAN value TRUE If their argument satisfies the

stated condition (the series Is identically equal to zero or a constant), otherwise, FALSE.

The input/output procedures are also self-explanatory. The procedure WRITE INTERVAL

is Included, since the standard Pascal-SC procedure 1331? only prints the digits of the

lower and upper endpoints of intervals which agree up to the last (23). WRIT!INTERVAL,

however, prints all digits of each endpoint.

S. The initial-value Problem for ordinary differential equations. Taylor "erie

methods for the nmerical solution of Initial-value problem for systems of ordinary

differential equations have been studied by many authors (see 161 or (13) for summaries),

and have been used for applications such as dynamics and parameter identification. Each

component of the solution of

(5.1) Yi4 - f 1 (xfy)g yI(Xo) - Yi~f i-

Is expressed as a Taylor series expanded at x - x0 using recurrence relation. derived from

the differential equation. Various error control strategies have been employed. The

strategy of analyzing the radius of convergence of each component series has the desirable
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side effect of producing such analytic Information " the location and oIders of the

singularities in the solution. owe the radius of convergence Is known, a stepeise can be

chosen which Is as large as possible subject to error control and stability constraints.

Then each component of the solution is extended by analytic continuation end the proem Is

repeated at the next Integration step. this algorithm Is discussed in greater detail in

(61.

A program UDUOL.,V for solving equation (5.1) Is given as Appendix A of this

report. The program Is written for the cas a - 1, but can be modified easily to handle

systems of several equations. The variables T and 1PRIN are declared to be of type

TAYLOR, and the equation Is written in a natural Way. TO solve a different equation, it is

only necessary

o to change the line in ROMpOLV which contains the differential equation,

o to copy from the library into the source program any operators or functions

required by the now differential equation.

Because the differential equation is written using the typeS and operators discussed in the

preceding sections, the needed recurrence relatlons are implamented by the Pascal-C

compiler and need not be derived explicitly by the user.

The program prints the series terms, extends the solution by analytic continuation to

compute the initial condition at the next stop, and repeats the process. The program

RD BS V in Appendix A is intentionally simple to illustrate the use of the Taylor

operators and to explore the stability of the series generation. it would require an error

control mechanism in order to be of practical value for the solution of initial value

problems. tither scalar (61 or interval [121 error control techniques can be used.

The program ID3LSOLV3 listed as Appendix 3 of this report computes interval-valued

approximate solutions to equation (5.1) for the case m - 1. but can be modified for systems

of several equations. It differs from the program DULQOLV only In that

i) the variables T and YPRIN are of type ITAYLOR instead of type TAYLOR, and
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1i) additional code has been added to monitor the relative error

introduced by instability in the series generation proce s.

thene two programe are designed to serve as examples of one way In which the tools of

this report can be used. They are simple, mnu-driven programs which allow direct user

intervention at each integration step. By observation of the outcome of each step, the

user can experiment with error control strategies. & User anual containing more detailed

instructions for using these programs is included as Appendix D of this report.

The bounds computed by XDIQSOLV are for the interval-valued Taylor polynomial

(3.3). They are not global error bounds for the solution of the differential equation.

Global error bounds are readily computable using interval remainder terms (see [123)., but,

for simplicity, the programs given here contain no error bounding or control strategy.

6. An application, Stability of sOries 21neration. In this section, we present an

example which uses the Taylor and interval Taylor operators. This example was chosen

because it illustrates the uses of these operators and because it addresses the issue of

stability in the generation of the series. The latter issue Is central in showing that

Taylor series methods are reliable for practical computations.

A numerical computation is said to be unstable if its relative error grows without

bound as the computation proceeds. It is possible that the recurrence relations being used

might be unstable, although instability has never been observed in practice. This example

uses the Taylor and interval Taylor operators to explore the stability of the recurrence

relations in one application. In this example, there is instability in the generation of

the terms of the series, but that does not seriously affect the accuracy of the series

tmation. The stability of the recurrence relations in other applications can be handled

similarly.

-28-
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Consider the initial value problem

(61 Y, 7 (O) It

whose solution Is y(x) - 1-x). A program (RDUQ OOLV) for solving equation (6.1)

using the Taylor function T"Q is given am Appendix A of this report.* The effect of

program RDXLBOLV Is to generate the normalized Taylor coefficients (4.3.1) of the solution

recursively. This recurrence in accomplished automatically by the Taylor function TSQR in

the statement iPRINI s- TQR M. In this case, the saim solution is obtained if Y ' 2 or

Y *P is used Instead of TSQR (Y); however, the use of Y ** 2 requires the compilation of

much more ce, while T * Y is not as fast as TSQR (Y).

We wish to explore the stability of the recurrence relation (6.2). This Issue is

separate from the Issue of the stability of Taylor series methods for solving initial value

problems. If an Infinite Taylor series were used, the method would be A-stable, but when a

truncated series is used, the region of stability is bounded. stetter (213 shoved that the

region of stability for truncated Taylor series methods is the same as that for related

Runge-Rutta method.. The real Interval of stability is relatively large here because long

series are used. For example, the real Intervals of stability are (-6.65, 01 and

1-16.29, 01, respectively, if DIN u20 and 40 toerm of the series are used.

We will outline the theoretical analysis of the stability of recurrence (6.2). A more

complete discussion appears in (61. Let (M) denote the actual and Y(K) denote the

computed normalized Taylor coefficients. ret Y(1) - 3(i) (I + C) -(I + C) from (6.1).

Then U(K) .h K-1, and

(6.3) y(K) M 2 +( O,

so the ories generation Is unstable. Nowever, the summation of the series Is unaffected

by this instability since
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DIN DIN K
yx - I Y(K) (0 + C) I (hW +*0

K1 K-I
(6.3)

- (I + 9) y(hI + 0)) + Oth DI)

- (0 + W)yMh + Y'MCh) + O(hDIK), h h(l + C).

That is, the Instability In the eerie. generation Is equivalent to a mall error in the

point at which the series In evaluated. This Is because ItK(K) to a convergent sari**, so

the terms for which instability causes the relative error to be largest are themselves vary

small.

This suggest* using interval arithmetic to keep track of the potential growth In the

series. The program IDUQOLV listed as Appendix 3 of this report does so.

By declaring Y and YPR133 to be of type ITAYLJORr the statement 113133 s ITBQR(T)

invokes the function IT9QR for Interval valued series to generate interval normalized

Taylor coefficients according the recurrence relation (4.3.1). The lengths of successive

coefficients measure the stability of the recurrence. Table 6.1 shows the Interval valued

series solution of equation (6.1) for DIN - I5, y~o y(O) - (0.99 1.011

j ~ (e - + 0.01), and h - 0.5. The ma Wted Instability Is equal to

length (YTC(KJ)
(6.5) 2

Computed midpoint (Y.TC(KI)

a measure of the relative error In 1.TC(K) which appears to grow as K Increases. The

theoretical instability is equal to

(6.6) gThoretical - (0 + ).

Table 6.1 shows that thee* two values are very close, and that the theoretical bound Is

slightly larger than the actual bound, as It should be. The Interval estimate for y(0.SI

agrees well with the Interval ty(0.46), y(0.54)I -(1.3518. 2.1739).
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hAD r UVL VITXA, COMINDZ!ZOND N0, (10)I

I3IAL CORDZIO1 AT 10 . [ 0.000002+00, 0.000002+00),
ao 1 [ 9.900001-01, 1.010001+00].

ON 3U1I6 I - 10* 0.5
Computing series tems ...

step Left Right Computed Theoretical
hdpoint Endpoint nstability Instability

I [ 9.900003-01, 1.010004.001 1.0101+00 1.0103+00

2 [ 4.900503-01, 5.100503"-01) 1.0203+00 1.020x+00
3 I 2.425753-01, 2.57575-01 1.0301+00 1.0303+00

4 [ 1.2007511-01, 1.300761-01) 1.0401+00 1.0411+00
5 I 5.943692-02, 6.563313-021 1.0503+00 1.0513+00
6 ( 2.942131-02, 3.31725i-02) 1.0603+00 1.062N+00
7 1 1.456353-02, 1.675213-021 1.0703+00 1.0723+00
9 7.20942-03, 8.4599211-03 1.0303+00 1.063 +00
9 t 3.$5632-03, 4.272213-031 1.090N+00 1.0942+00

10 1 1.766373-03, 2.157473-031 1.1002+00 1.1053+00
11 8 3.743543-04, 1.0952z-031 1.1103+00 1.1162+00

12 C 4.323053-04, S.502033-04) 1.1193+00 1.1272+00
13 ( 2.142393-04, 2.773553-043 1.1292+00 1.1382+00
14 [ 1.060433-04, 1.403173-04] 1.1393+00 1.1493+00
15 5.249333-05, 7.085992-051 1.1493+00 1.1613400

TUK VALUE AT I - ( 5.000001-01, 5.000003-013
II s . [ 1.960341+00, 2.040333+001.

Table 6.1. interval bounda for instability.

7. Iplementation details. The software described in this report was created and

tested using the Paacal-C compiler developed at the University of tarleruhe for the Zilog

MCB-i computer with the RIO 2.06 operating system. no other claims of correctness or

usability are made.
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APUIDIZ A

PmFAM Rwo SOLVE (INPUT# DATA, OUTPUT)l

( EGVE A FRSr aoRDE vznmtEruIL BWATXO~s T' VO59 (Y) )

coonT Din - 30:
TwoE DISYP a 1..DIxg

RVOCTOR -ARREAT(D11tYPZ OF REAL
TAYLOR - RUCOND LWAGY DINT!PhI

T tRnALI

CHOICE a .3

VAR FLAG u ROIC31
I, INI : DDSTII
1, Y, 1131HZ t TAYLOR:
DATA I E~

FUNCTION VmUL I RVUCTORl
VAR Is DINTYPto Us RVWCYORs

FOR I Im To1 Din co Utz) 1- 0.01
MUNLL a

END: FU1'NCTION VRNULL *
FUNCTION TSQR (Ts TAYLOR) : TAILOR: ( MTSR(T) *

(a lquireas IMULL, SCALP. SQR *
VAR I. J, K. MAFS DIWTYPED

X, Ys RYNCTORr
U aTAILOR,

X :- VRNULLs T s- VANULL
U.LUNGT s- T.LEUOTE
U.! I- ?-TI

amC11 -SQR (T.TCO1

BEGIN
XK 1%) T. TC(K)j:
RALI X. DXV 2.s
FOR J Im TO HALF DO

BEGIN
I a- K - + 11
1(1 M T.TC1II
ENDI (FOR3'J

U.TC[X) s- 2.0 * SCALP X . Y, 0)i
IF K MOO 2 - I THEN

BEGIN
HALF s- HALF + 1;
U.TC(K]3a U.TC (11 + SQlt (T.Tc(HALV)
END (* IF)

amD, (* FOR K 01
TSQR zU
ENDS C FUNCTION TSQR (TAYLOR)
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FUNCTION MENUCHOICE . CHOICE;
VAR I: INTEGER;

BEGIN
WRITELNi
WRITELN ('ENTER: 1 GIVE NEW INITIAL CONDITIONS');
WRITELN ' 2 - CONTINUE EXTENDING THE SOLUTION');
WRITEL.N (' 3 - STOP');

READ (1);
IF ((I >- 3) OR (I <- 0)) THEN I : 3;
MENU_CHOICE :- I
END; (* FUNCTION MENU CHOICE ')

PROCEDURE PENT TAY COEF (Y: TAYLOR; INDEX: DIMTYPE)i
BEGIN
WRITELN ('Y', INDEX:5, ') ', Y.TCEINDEX]
END; (* PROCEDURE PRNT TAY CORE *)

FUNCTION SUM (VAR A: RVECTOiR; DIM, ROUND: INTEGER) REAL
EXTERNAL 480;

BEGIN (*MAIN PROGRAM RDEQSOLVV*)
(* ........... INITIALIZE ')
FLAG ; 2;
X.LENGTH : DIM;

Y.LENGTH : DIM;

RESET (DATA);
WHILE FLAG <- 2 DO (' LOOP FOR NEW INITIAL CONDITIONS *)

BEGIN
FLAG :- 2;

X.TC : VRNULL;
Y.TC : VRNULL;

WRITELN ('READ REAL INITIAL CONDITIONS XO, Y(X):');
READ (DATA, XoTC[I); READ (DATA, Y.TC[l);
WRITELN; WRITELN;
WRITELN ('INITIAL CONDITIONS AT XO - ' X.TC[I), ',');
WRITELK ' Y0 ', Y.TC[Ij], '.');
WHILE FLAG - 2 DO (' LOOP FOR ANALYTIC CONTINUATION )

BEGIN
(*.......... READ STEP SIZE ')

WRITELN ('ENTER STEPSIZE X - XO: ');
READ (X.T);
Y.T : X.T;
WRITELN ('Computing series terms ... ');
FOR I :- 2 TO DIN DO (' LOOP FOR SERIES GENERATION ')

BEGIN

- YOUR FIRST ORDER DIFFERENTIAL EQUATION GOES HERR:
YPRINE :- TSQR (Y);

' IM1 :- I - i1
Y.TC[I] to. YPRIME.TC[I1] * Y.T / 114;

END; ('FOR')

(5............. PRINT TABLE ')
WRITELN; WRITELN;

WRITELM ('THE TAYLOR COEFFICIENTS OF Y ARE:');
FOR I : 1 TO DIM DO PRNT TAY COREF (Y, I);
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...... PERFORM4 THE ANALYTIC CONTINUATION )

Y.TC[j] :- SUM (Y.TC, DIM, 0);

FOR 1:- 2 TO DIN DO Y.TC[Il 0.01

X.TC[1) :- X.TC111 + X.T;
WRITELN;
WRITELN (THE VALUE AT X - ',X.TCE1]);

WRITEWN C Is Y - Y.Tct1],'.)

FLAG :-MENUCHOICE

END (*WHILE*

END (*WHILE*)

END. (* AIN PROGRAM RDEQ_SPOLVE *
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APPENDIX S

PiMIO tongQ OLVR (INPI[T DATA, O(TPUT)I

(* SOLVE A FIRS ORDER DIFFERENTIAL EQUATION *)
(* -"QR (Y) *)
(* SOLUTION I N INTRVAL F *)

OOST DIN - 15;

TYPE DINTYE - 1. .DZN
INTERVAL - RECORD IN?, SUP t REAL ENDP

rVECTOR - ARMY DINTVYPI OF ZNTERVALs
ITAYLOR - RECORD LENGTH s ODlNTYPI

T t REAkL I

TC IVECTOR ENDi
CHOICE - 1..31

VAR rLAG 2 CHOICEI
1, IN1 : DDITYPEI
X, Y, yVPRIN ITAYLORI

DATA aTEXT
EICILONl,

COMPOUND M REAW,

(* Transfer Functions

FUNCTION l"M (R SAL ) : INTERVAL;
EXTE RAL 411

FUNCTION "INTAL m RA, mB: REAL ) : INTERVL' ;
EXTERNA 421

FUNCTION IluE ( As INTERVAL) I REAL
EXT AIIAL 431

FUNCTION ISUP ( A r INTRVAL) : REAL;
EXTERNAL 441:

(* Comparisons )

OPERATOR <- (A.8s INTERVAL ) RSt BOOLEA i
EX ERNAL 481

OPERATOR >- (A.B INTERVAL )RZBI BOOLZAN S
EXT1RNAL 501

1 O]L)E.A OR Zl (INTEGErJL s 5 D1ERVAL ) RES DOOLEANlI
OPERATOR in (RAsR As I R NTZRVAL) RUSt OOLANi

EXTERNAL 47;

*OPERATOR IN (YAtD ITG R St INTERVAL IS ; OZ~
EXTERNAL 4631

OPERATOR M€ (A,93 IZ'NR1VAL ) Rlffi BOOLEAN i

(Lattice Operator *)

OPER ATOR fa ( IT ERnAL) RtEMs IZxRX
EXTERNALZ 631

OPERATOR * (A.o INTERVAL) RZ~s ZINERVALs
EXTERNAL 60;
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( Arithmetic Operators ')

OPERATOR ( A+ s INTERVAL ) RES$ INTEMVALl
EXTERNAL 671

OPERATOR - ( As I-TERVAL ) RS: INTERVALY
EXTERNAL 66;

OPERATOR + ( A,3: INTERVAL ) RES: INTERVALI
EXTERNAL 681

OPERATOR + ( RA: INTEUGER S: INTERVAL ) RU18 INTERVALS
XTZERNAL 691

OPERATOR + ( At rIMERVALr U: INTEGER ) RS: INTERVAL
EXTEMAL 701

OPERATOR - ( A,B: INTERVAL ) RBSs INTERVAL
EXTERNAL 731

OPERATOR - ( JrA: INTEGER; B: INTERVAL ) US: INTERVAL I
gxTERlAL 751

OPERATOR - ( As INTERVAL; gKs INER ) US INTRAL,
EXTERNAL 741

OPERATOR * ( A,B: INTERVAL ) RUSI INTERVAL
EXTERNAL 78l

OPERATOR * ( 1 R: NTEGER, 3: INTERVAL ) RS: INTERVALI
EXTERNAL 791

OPERATOR * ( As INTERVALPI : INTEGER ) RS: INTRVAL,
EXTERNAL 801

OPERATOR / ( AB: INTERVAL ) RES: AINRVAL,,
EXTERNAL 85?

OPERATOR / ( RA INTEWGR; Bt INTERVAL ) RS: INTERVAL
EXTERIAL 83l

OPERATOR / ( A: INTERVAL; ED: INT R ) RS INTERVAL
EXTERNAL 861

FUNCTION ISCALP (VAR A, 3: IVEOR; ADIM I INTEGER) : INTERVAL;
EXTERNAL Sol

( Standard Flnctiong )

FUNCTION IABS ( .: INTERVAL ) : REAL;
EXTERNAL 101;

FUNCTION ISQR ( Yt INTERVAL ) : INTERVAL#

-, EXTERNAL 102;
FUNCTION ISQRT ( Y INTERVAL ) : INTERVAL;

EXTERNAL 105;

FUNCTION IXP ( Ys INTERVAL ) : IlTXRVALP
EXTERNAL 106;

FUNCTION ILl? ( Y: INTERVAL ) : INTKRVALY
EXTERNAL 1071

FUNCTION IARCTA ( Ys INTERVAL ) : INTE1RALs
EXTRNJL 101

FUNCTION 181W (V. IYs .IRVAL ) a INTERVAL;
EXTERNAL 1091

FUNCTION ICOS ( Ys INTERVAL ) : INTERVAL;
EXTSNAL 110;
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( input /output '

PRCDO33 13RD (VAR F iTURY VAR As INTERVUL
EXTBRNAL 921

PROCEDUE WNRITS ( VAR Fs MriT As ZNTIRYM.L )P
RXIENIAL 9 11

FUNCTION ISUM (As IVUCTORi DIM: DIK!VP ) s INTEVAL
VAR 31 IVICTOR;

Is DINTI

FOR I I To DIN DO all) I Im (1.0,
I81U , ISCALP (A. 2, DIN)
hNI; C FUNCTION ISUM *

FUNCTION IVUNULL s IV3CTOR;
VAR to DIMTtPE; Us IV2CTORo

FOR I s- I To DIM DO O(1) s- LOTT (0.0)l
IVRWULL %- U
XNb; (' FUNCTION IVUNULL '

FUNCTION ITSR (To ITAYWR) i ITaTLOR; 0IiUCI)

(* Psquirem: IVRUI, ISCALP, ISQE '
VAN 1, J, K, HALF, DIWMVP

X, Ys IVUCTOR;
U a TAYLORI

X :- IVINULL T :- IVRNULL;
U.LcEo= g T.LEOGIp
U.T s- T.T)
U.TC :- IVRHUL;j

U.TCt11I-a ISQR (T.TC(11)i
111 :- T.TCfI);

FOR K 1- 2 TO K.LZNMT DO

tril I- ?.TCtKI;
HALFW K DIV 2;
FOR 3 I TO HALF DO

V~ I- Rn - j + 1;
T[J] T.Tct1l

U.TCtKja 2' ISL (X. T. HALF);

RA Hs ALF+I
U.KCXs- V.TCMR + I9QR (T.TC(NALFJ)
END (* IF)

END; (9 FOR K
ITBQR sU
E9ND; FUNCTION ITiQA (ITATLOR) '
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FUNCTION MENU CHOICE : CHOICE;
VAR 1: INTEGER;

BEGIN
WRITEL;
WRITELN ('ENTER: 1 - GIVE NEW INITIAL CONDITIONS' );
WRITELH C' 2 - CONTINUE EXTRUDING THE SOLUTION');

WRITELN ' 3 - STOP')i
READ (I);
IF ((I >- 3) OR (I <- 0)) THEN I : 3;

NU CHOICE :- I
END; (* FUNCTION MENUCHOICE 4)

PROCEDURE WRITEINTERVAL (INTl INTERVAL);

BEGIN
WRITE ((', INT.INF:12, ', ', INT.SUP:12, '1);
END; (* PROCEDURE WRITE INTERVAL )

PROCEDURE PRNTITAY CORP (Y: ITAYLOR; INDEX: DITYPE);

BEGIN
WRITE ('Y(', INDEX:5, ') -
WRITE INTERVAL (Y.TC (INDEX]);

WRITELN
END; (* PROCEDURE PRNTITAYCOEF

FUNCTION INTERVALLENGTH (INT: INTERVAL) REAL;

BEGIN
INTERVALLENGTH :- INT. SUP -INT. IN
END; (* FUNCTION INTERVALLENGTH )

4 FUNCTION RELATIVELENGTH (INT: INTERVAL) REAL;

BEGIN

RELATIVE LENGTH :- 2.0 * (INT.SUP - INT.INF)

/ (INT.SUP + INT.INF)
END; ( FUNCTION RELATIVELENGTH ')

FUNCTION RELATIVEERROR (INT: INTERVAL) REAL;

BEGIN
RELATIVE ERROR :, 2.0 * INT.SUP / (INT.SUP + INT.INF)
END; (* FUNCTION RELATIVE ERROR )

BEGIN (- MAIN PROGRAM IDEQSOLVE ')

(* ........... INITIALIZE *)

FLAG :- 2;
X.LENGTH : DIN;
Y.LENGTH : DIN;
RESET (DATA):
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WHILE FAG <- 2 DO C' LOOP FOR NEW INITIAL CONDITIONS *)

BEGIN
FLAG :- 21

X.TC : IV-NULL;

Y.TC : IVRNULLi

WRITELN ('READ INTERVAL INITIAL CONDITIONS X0, Y(XO );

IREAD (DATA, X.TC[IJ); IREAD (DATA, Y.TC[1]);

WRITELM; WRITELNs
WRITE ('INITIAL CONDITIONS AT XO = ')!

WRITEINTERVAL (X.TCEII)i WRITELN (',');

WRITE (' YO ')I

WRITE INTERVAL (Y.TCE11)i WRITELN ('.')i

WHILE FLAG = 2 DO (* LOOP FOR ANALYTIC CONTINUATION ')

BEGIN
( ........... READ STEP SIZE )
WITELN ('ENTER STEPSIZE X - XO: ');

READ (X.T)i
Y.T :- X.T;

WRITELN ('Computing series terus .••' ;

FOR I :- 2 TO DIM DO (* LOOP FOR SERIES GENERATION )

BEGIN

C* YOUR FIRST ORDER DIFFERENTIAL EQUATION GOES HEPZ:

YPRIME :- ITSQR (Y);

IMI : I - 1;
Y.TC(I1 :- YPRIME.TC (IMN * INTPT (Y.T / IMI);

END; (*FOR*)

(............. PRINT TABLE *)

EPSILON :- 0.5 * RELATIVE LENGTH (Y.TC(lf);

COMPOUND :- 1.0;

WRITELN: WRITELN;

WRITELN ('Stop Left Right Computed

Theoretical');

WRITELN 0 Endpoint Endpoint Instability

Instability');
WRITELM;

FOR I :- I TO DIM DO (* LOOP FOR ERROR MEASUREMENT "1

BEGIN

COMPOUND :- COMPOUND * (1.0 + EPSILON);
WRITE (1:3); WRITE ' 'I;

WRITEINTERVAL (Y.TCEIJ);

WRITE ' RELATIVE ERROR (Y.TC()):10);

WRITE ' ', COMPOUND:0); WRITELN

END; (*FOR*)

C(.......... PERFORM THE ANALYTIC CONTINUATION ')

Y.TC[1] :- ISUM (Y.TC, DIM);

FOR I :2 TO 0114 DO Y.TC[I] :- INTPT (0.0);

X.TC[1) :- X.TC111 + INTP' (X.T);

fe WRITEL,

WRITE ('THE VALUE AT X - '1); WRITE INTERVAL (X.TC[1]); WRITELN;

WRITE ' IS Y - '); WRITEINTERVAL (Y.TC[1]); WRITELN ('.');

FLAG :- MENUCHOICE

END (*WHILE*)

END (*WHILE*)

END. (*MAIN PROGRAM IDEQ..SOLVE*)
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APPIDIX C

Source Code for TAYLOR and ITRYLOR Operators, Functions, and procedures

The Pascal-SC source cods for the operators, functions, and procedures

described in this report i contained in seven filest

1. Real and interval Taylor addition and subtraction operators

(RIT ADD. LI),

2. Real and interval Taylor multiplication operators including Mi

and ITSQR (RIT KUL.LIB),

3. Real and interval Taylor division operators (RI! DIV.LIS)i

4. Mal Taylor power operators and functions (RT POW.LZ)t

5. Interval Taylor power operators and functions (IT POW.LIB)P

6. Real and interval Taylor functions (RIT FNS.LIB)o

7. Utility functions and procedures (UTIL.LIB).

Bach file is headed by a table of contents to assist in the location of the

needed routines. In addition, a complete table of contents for all files of

TAYLOR and ITAYLOR operators, functions, and procedures Is given in the file

CONTUMTS.LID. The first line of code for each subroutine contains a short

identification in coments brackets, for example, (' K + ! *) to assist in

locating it with the help of a text editor.
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C. 1. Real and Interval Taylor Adition asol Eubtragotion Operators.

(* RI? AVO.LID - REAL ANW INTERVL TAYLOR 1W AW WDTRACT (<<l(<(

Contents:I

+ T OPERATOR + (Ts TAYLOR) RE TAILOR,
K +T OPSRATOR + (ml INTE aR To TAYLOR) AS s VATLwa,
T + x OPERATOR + (To TAYLOas K3 ZMMlE) US t TArwaf
*+4T OPERATOR + (Rs RZAL, To TAYLOR) RE a TAT14R,

T + 3 OlPERATOR + (To TAILORr s U IAL) RM i TAYLOR#
T + T OPERATOR + fTAD Tag TAYLOR) RIS a TAIORI
+ IT OPERATOR + (Tt ITAYLOR) RE s ITAYLOR:
K + IT OPERATOR + (Ki INTEGEI To ITATLOR) Ru a ITYLRI
IT + K OPERATOR + (Ts ITAYLORP Ki IN=MGR) RE ITAII.ORs
I + IT OPERATOR + Mt: INRVALP Ts ITAYLOR) RES a ITAYLORi
IT + I OPERATOR + (Ts ITAYLCR: Ki INTERVAL) RES a ITATLORi
IT + IT OPERATOR + (TA# Tat ITAYLOR) R28 s ITAYLORy

- OPERATOR - (Ts TAYLOR) RES i TAYLORi
K- T OPERATOR - (Ks rNTEERS Ts TAYLOR) RE s TAILOR:

T - K OPERATOR - (To ITLOR: Ks INTEGER) RE a TAILORx
R - T OPERATOR - (It RElS Ta TAYLOR) -E a TAYLORi
T - R O1PERATOR - (To TATLORS As SEAT) RE a ?TYLR:
T- T OPERATOR - (TA Ta TAYLOR) RE- TAYLORs
-IT ORATOR - (Ts ITAILOR) RES i ITAIOS;

K - IT OPERATOR - (Ks ZUTUER: Is ILOR) -I I ITAYLORS
IT - K OPERATOR - ( Ts IlAYLOR Ks INTEGE) REO a ITAYLORi
I - IT OPERATOR - (Kt INTERVAL Ts ZA.R) RES a ITAILORi
IT - I OPERATOR - (Ts ITAYLOR: Ks INTERVAL) RES a ITAVLORo
IT - IT OPERATOR - (TA, TM, ITAYLOR) RE i ITAYLOR:

OPERATOR + (Ts TAYLOR) RE a TAYLOR: + T '
BEGIN RUE so T ENDS (* + TAYLOR *

OPERATOR + MKl INTEGER? TI TAYLOR) RE I TAYIS( K. T *
VAX Usi TAYLOR,

U.TCl) go K + T.TeftJ,

ENDs (* INTEGR + TAILOR '

OPERATOR + (Ts ITAR Ks OINTGE) RUE s TAYLOR, 0 + K *
BEGIN
V to To
U.Tc[1J in T.2cill + R

ZWs TAYLOR+ INTEGE *
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OPhRA0°R + (Ra 333Li Tt TAYLOR) 338 i TAILORs (0 R + T )
VAR Us TAYLOR#
BEGIN
U s- To
U.TC[II s- R + U.TC( ]I
R38 :- U
3ND3 (0 REAL + TAYLOR *)

OPERATOR 4 (Ts TAYLOR: Rs REAL) 338 8 TAYLOR; C' T + R 0)

VAR Us ThYLORp
BEGIN
U i- TI
U.TC(1) a- U.TC[1] . R
RE8 s-,U

3ND1 (* TAYLOR + REAL 0)

OPERATOR + (TA, TBt TAYLOR) R18 i TAYLORI (0 T + T 0)

VAR Us TAYLOR; Is DIKTYPE,
BEGIN
IF TA.T <> TB.T

THEN BEGIN
WRITE ('ERRORs ADDITION OF TAYLOR VARIABLESI )i
WRITELE (' WITH UNKQUAL SCALE FACTORS'):
SVR (0) END (0 RETURN TO OPERATING SYSTEM0 )

ELS BEGIN
U.LENGTH :- TA.LNGTHi
IF U.LNGTH > TB.LE GTH THE U.LNGTM t- TB.LENlGTE
U.T t- TA.Ti
FOR I I TO U.LENGTI DO U.TCCIZ I- TA.Tc(IJ + TB.TC(IJI
RES I"

END (0 318 E 0)

ENDI (* TAYLOR + TAYLOR 0)

OPERATOR + (Ts ITAYLOR) RE8 i ITAYLORI ( + * IT 0)

BEGIN RES %- T ENDI (0+ ITATLOR )

OPERATOR + (K: INTEGER, T: ITAYLOR) RE8 a ITAYLOR: (0 K + IT 0)

VAR Us ITAYLORr
BEGIN
U I- To
U.TC(1] :- K + T.TC(I1,
RE8 i- U
END; (* INTEGER + ITAYLOR 0)

OPERATOR 4 (To ITAYLORJ Ks INTEGER) RE t ITAYLORo C. IT 4. K *)
VAR Us ITAYLORI
BEGIN

U s To
U.TC[ s- T.TC[1) + K;
RE8 a"U
BND (0 ITAYLOR + INTEGER 0).4 -44-
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OPERTO + (It IMTRVALI T: ITAiLOR) 333 MaYLRIWR I + T )
VAR us ITAILOR;

U s- Ty
U.TCII) +m1 T.TC(1JaI

EN101 (* XNTERAL + ITAILOR J

OPERTOR + (Ts ZTAILORs Ks INTRVAL) 335 ra TILRi IT + I
VAR Us ITATLORl
BEGIN

U.ycrII I-n T.TC!11 + Ki
RES :- U
ENDi (* ITA1'LOR + ZNTRMAL.)

OPERATOR + MTA. TB: ITAYLOR) ME3 II'AILORt IT 4 T )
VRR Us ITAYLOR; Is DINTTPi
33013
IF ?A.T 0 TR.T

WRITE CERRORs ADDITION or ITATLOR vmAaBLES)I
MMR~ V' WITH UNEQUAL SCALM FACTOR');

SVR (0) END C'RETURN TO OPRATING SBMWE)
E"St DEGIN

U.LENGTE s- TA.LENOE,
IF U.LENGT > T3.LOWT ?1 U.LZNM s- TB.LENM#E
U.? t- TA.Tl
FOR 1 8- 1 TO U.LENGT DO U.TC[Z1 s- TA.Tc[IJ + T3.TCtI),
REG am

4 END M2ESE*4 ENMD5 (* ITALOR + ITAYLOR

OPERATOR - (Ta TAILOR) RES a TAILOR; ' T )
VAR Us TATItiR Is DINT~i
BEGIN

FOR I I- I TO U.LENMT 0O U.TC(II ) T.TC(Ij,

ENDs ' TAILOR

OPERTOR - (I INTEGRR Ts TAILOR) 333 a TAILOR; ( I -T

VAR UaTAYLOR; Is DINTIPE#

U.LEWMT a- T.LENGTU
U.T s-n T.Tf
V.TC(13 I- I - T.TC(11u
FOR Tamt 2 TO O.LUNOT D0 U.TC[Ij m T.TC(II,
RIB aU
END: C INTEGR - TAILOR
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OPERATOR M (a TAYLORs Ks 13T3GR) RES a TAYLOR# T -K
VAR Us TAYLORs
a3013
U s- Ti
U.TCttl I- T.2criJ - KI

END; C TAYLOR - INTEGER 0

OPERATOR - (Rs RAL; Tv TAYLOR) REM I TAYLOR; C R -T )
VAR Us TAYLORo Is DIKMYPE

U.LZUOTH a- T.LEWGTU
U.? a- T.T;
U.TC(11 a- R - ?TtCi),
FOR I a- 2 TO U.LGTU DO U.TC[IJ a - T.TC1I18

MiD (* REAL - TAYLOR)

OPERATOR - (Ta TAYLORr R3 REAL) RES a TAYLOR; T -R 0

VAR Us TAYLoOR,
BEGIN
U I-TI
U.TCll]s:T-TC1 - Ri
RES s- U
ENDI (* TAYLOR - REAL)

OPERATOR - MTA, TB: TAYLOR) RU8 a TAYLOR; C T -T )
VAR U: TAYLORs Is DINTM#E

IF TA.? 10 TB.T

WRITE ('ERNRa SUBTRACTION OF TAYLOR VRAXE*S)i
WRITELE (' WITHl UNEQUAL SCALE FACTORS' )a
BvR (0) EZ=( RETUN TO OPERATING SYSTUI)

U. LENOI s- TA.LEUOTE
IF U.LENGTH TB.LWIM THE U.LEWGTU a- TU.LUUOTE
U.T s- TA.?,
FOR I I- I TO U.LENQTff DO U.TC(Il s- TA.TC1II TB.TCCI I
RUS 3 U

EN (* ELSE 0

NMI (* TAYLO0R -TAYLOR 0

OPERATOR - (T: ITAYLOR) R28 s ITAYLORs ( IT 0

VAR Ut ITAYLORl It DINTYPE
33013
U.LENOT t- T.LEWPGTEI
U.? I- T.T;
FOR I o- I TO U.LVWOT DO U.TC(Zl t-- T.TCMI
RU , U



OPEMATIM (toINEGR Ts ITATWR) 331 s ITAIWE,(*K If
VAR UaI7TYLRI I: DIwPTP3

U.LGTU a T.LENGTE
U.? I- ?.?I
U.TCIIJ I - T.TC1111
FORn It- 2 TO U.LUSO! DO U-TC(IIl T.TC(I),
an l- U
ENDS (* INTg=R - ITATLOR 0

OPERATOR - (Ts ITATLOR# Is rNTEGE) RU t 1YA1W3. C IT - KI
VAR Us ITATLOR:

0.TC(l1 am T.TC(1j - K:
m I- U

ENWI (* ITATLOR - INTEER 0

OPERTOR - (Ka INTRVALS Ts IT&TLOR) RXM s ITATLAORS C I -IT )
VAR UsITATLO~p Is DIMTYI

U.LENGT s- T.LENGYi
o.T I- T.Ts
U.Tc(II I- K - T.Tc(t)I
FOB Its 2 TO U.LGTU 0O U.TC(h) I- - T.TC(II,
RUB s- U
END: (O INTERVAL -ITATLOR *

OPMRTOR - (Ts ITAYLORs Is INTERVAL) 3M a ITATLORi IT I
VAR Us 1131103:P

U :ft Tg
U.TCL1 s- T.TC[1I Ki

RNg (0 ITAILOR - INTURVAL *

OPERTOR - (Th, is t ITATLOR) RUE ITAYL0RI IT -IT )
VAR Us ITATZOs: Is DINTYPI
VEGIN
IF TA.? l 13.1

THEN BEGIN
11RI14 ('ERMORs a SUTRACTION OF IVATLOR VMAIAL')s
WRITEL 0 WITH UNEQUAL UCA FACTORS' )i
SVR (0) EnD (0 MOUE TO OPERTINAG 31183MM)

NMITATLOR - ITATLOR 0

(tlDO IT AD.L13I))B) 0

447
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C.2. Real and Interval Taylor Ifltlplication Operators Including MR03
and ITNOR.

(0 RIT MEJL.LID - REAL AND INTERVAL TAYLOR ILTIPLY (((C(( <<(

Cortonts:

X. * T OPERATOR *(Ks INTEQER Ts TAYLOR) RES : TAYLOR:

T * K OPERATOR * (Ts TAYLORi X: INTEGER) RS : TATLOS:
R * T OPERATOR * (Is RURL Ts TAYLOR) 338 : TAYLORS
T I OPERATOR * (Tt TAYLOR: R REAL) RN s TAYLOR,
T T OPERATOR * (TA, TB: TAYLOR) RES : TAYLORI
TSQR(T) FUNCTION TSQR (T: TAYLOR) t TAYLOR:
K * IT OPERATOR * (K INTGER Ts ITAYLOR) RI i ITAYLORi
IT * K OPERATOR 0 (Ts ITAYLOR: K: INTEGER) RES s ITALoDR;
I ' IT OPERATOR (K: rTERVAL Ts ITAYLOR) RES ITAYLORI
IT * I OPERATOR 0 (Ti ITAYLORi K: INTERVAL) R38 t ITAYLORI
IT 0 IT OPERATOR 0 (TA, TBs ITAYLOR) RB t ITAYLORI

ITSQR(IT) FUNCTION ITSQR (Ts ITAYLOR) : ITAYLORi

OPERATOR * (Kt INTEGRRi T: TAYLOR) RE8 i TAYLORi (0 K * T 0)

VAR IsDIMTYPE: U: TAYLORI

BEGIN
U.LENGTH :m T.LENGTHU
U.T : T.T;
FOR I s- I TO U.LENGTH DO U.TC[I] :- K * T.TC(I I
RES :U
END: (* INTEGER 0 TAYLOR 0)

OPERATOR 0 (T: TAYLOR: K: INTEGER) RES t TAYLOR: (0 T K )
V tDINTYPE; Us TAYLORr

BEGIN
U.LZMNGH :- T.LNGTHI
U.T s- T.T,
FOR I : I TO U.LENGTH 00 U.TC[I) I- T.TC[II 0 K1

RE : U

ENDi (* TAYLOR * INTEGER 0)

OPERATOR 0 (I: REAL: Ts TAYLOR) R33 : TAYLOR: (0 R T 0)

VAR It DINTYPEI Us TAYLOR
BEGIN
U.LZNQTH t- T.LZENT8j
U.T s- T.T:

FOR I t- I TO U.LEZNQH DO U.TC(I] t- R T.TCI]I:
RS ,,U

ND ( REAL TAYLOR )
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OPhEATOR (s aTAYLOR; Rs REAL) RU TAYWRa T R
VAR Is DINTYP~o 0: TAYLOR;

U.L3NMT s- T.LEVGYN
o.? I- ?.?I
FPOR I s- I TO U.LENGTE 00 U.fctIJ a- ?TC(Z) *Rl

RES 1- U
END (* TAYLOR *REAL )

OPRhTOR * (TA, Tbs TAYLOR) RU a !IIWORI T T *
(* REQUIR29i VXIULL, SCALP)
VAR 1, J, X a DIN~ia

* X, T a RYNCTORi
U a TAILORs

SEGIN
IF Th.? <> TS.?

THIM BEGIN
WRITE ('ERX)R: MULTIPLICATION OF TAYLOR VAILS')i
WRITRIM (' VITH UNEQUAL SCALE FACTORS'),
BWR (0) END (0RNTURN TO OP3RATZNG SYSTM~~

ELSE BEGXW
U.LENOE s- TA.LENGTj
IF U.LENGT> TB.IZNWM TM U.LENGT M TB.L3NGTE

U.? I-TA.?:
1 t- WRAULLl I- am RLLS
FOR I :- I TO t1.LMMT 0O BEGIN

X1I) t- TA.TC (II,
FOR 3 a I TO I 0O BEGIN

K I - 3,+ Is
Y(Ta B.TC(XI

END, (9'FOR JWLOP)
U.TCI :- SCALP CX, Y, 0)
ND (* FOR I MOOP *

a. ED: TAYLOR *TAYLO0R
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FUJNCTION MIR (Ta TAYLOR) aTAYLORI C'TOQRMT

(0 Requieas VNWULL, SCALP, xQR *)
VAR I, 3. K, HAL?: DINTYPE,

2, Ys RVUCTORI

U : TAYLOR,

BEGIN
X s- VRNULLi Y so VRNULLi

U.LENGQTH 3- T.LENGTU,
tl.T ?m.To
U.TC aVRNULLI

U.TC(1J so 891R (T.-(1ii~

MOR K s- 2 TO U.LENGTU Do
BEGIN
MRK) I- T.TCEK)I
RALF aK DIV 2p
FOR J a I TO HALF DO

BEGIN
I :- K - J + It
Y[JI ao T.TC11
ENDI (* FOR J '

U.TC[Xl t- 2.0 * SCALP o To Y 0)l
IF K MOD 2 - I THEN

BEGIN
HALF I- HALF + Ig
U.TC[XK] - U.TC(K) + SQR (T.TC (HALF])
END (* ZIFP

WNWI (* FOR K 0

TSQR :U
ENDs ( FUNCTION TSQR (TAYLOR) 0

OPERATOR 0(K: INTGER: T: ITAYLOR) RES a ITAYLORU (0KI IT )
VAR IIDITYPE5 Us ITAYLOR;
BGIN

U.LELIGTH too T.LENGTH;
U.T 3- T.T;
FOR I :- I TO U.LEUGH DO U.TC[I] i- K * T.TC(Ils

M#(*INTEGER * ITAYLOR )

OPERATOR * (Ts ZTAYLORI K: INTEGER) RES I ITAYLORI IT 's K 0

VAR ItDINTYPE; U: ITAYLORi

U.LENGTH smT.LENGTHs
U.T :- T.Ts
FOR I s- 1 To U.LENGQTR Do U.TC[Il so T.Tc(II KI
RES :o U
END (0 ITAYLOR 0INTEGER 0
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OPERATOR 0(KI ZUT3WAL T: ITAILOR) 336 IYATIa (* IV
VAR IsDXNTYPE, Us IPATIORs

U.!ZQT s- TT.z~ f

FOR I s- I TO U.LEN 00 U.TC(Il t- K * T.TC(lu
3a U

BMWs (* INTERAL * ITATLOR 0

OPERTOR' (T: lYATLORS K: INTERAL) IRS I ITATLORs IT I '
VAR I:DIrMp go UTAILOR,

U.LENGT s- T.LMWQTE
U.? I- T.Ti
FOR I I- I TO U.LENGTH DO U.TC[IJ s- T.2CfIJ KI

ENDS (* ITAYLoDR *INTERVAL 0

OPERATOR 0(TA, Tat ITAIOR) 338 t ITATXLORo IT IT 0

(* FAqplreus IVHKULL, ISOAL?
VAR 1, ', K s OINZtPg

X,! T sIVCTORg
U 3 ITATLORi

WRITE ('ERERs~ 14ULTIPLICATION Or ITATIOR VARXABLESI )sF WRITEW 0 WITH UNQUAL SCAME FACTRBI)t
SVR (0) END C' P.EURN TO OPERATING oftE

ELOE BEGIN
Xi-a IVRNULLo T if 114N2L=#
U.LXMQOf s- ?A.LEGU
IF U.LENOTN 3 T3.LENO'1 TEEN U.LENGTR t- TBALNNGYUI
U.! v- A.Tu
FOR I s- 1 TO U.LENGTU DO SWI1M

Zt1) TA.TCEIlo
FOR J7 I' TO I DO awlsN

K anI - .7 + It
I tISl TB.!c (KI
ENDS (* FOR J7 LOOP

U.TC(II Sm ZCALI (X, I, 1)
END C FOR I LOOW0

ENDI ( ITAYLOR 0ITAIOR 0



FUNCTION rSR (?I ITAYLOR) t ZTATLORi ITSQR(rr) *
(* flaqirts: IVUIULL, ISCALP, zsga '
VAR 1, J, K, HALF: DINTYPE

1, Yl IVECTORI
U I TAYLORi

BEGIN
X I- rVRNULL; Y :- rVRNULLi
U.LENT : - T.LENGTHa
U.T s- T.Tg
U.TC z- IVRWULLt

11) T.C[1

FOR K :~2 TO U.LRNGTH DO

X[K I-: T.TcEKI,
RALF X DIV 21
FOR J7 I- TO HALF DO

BEGIN
I :- K - J + i$
rY(J T.1C(I1
311: (FOR J

U.TC(K) s2 ISCALP ( X, Y, HALF);
IF K MOD 2 - 1THEN

BEGIN
HALF I- HALF + Ij
U.TCI[K]:- U.FC(KI + IsgR (T.?C(HALFI)
END (* IF)

END: (* FOR K *
ITBQR :U
EDIC FUNCTION ITSQR (lITYLOR) *

(0END or RI? M.LIR >>>>>>>>>>>>>> >>>)>) >>)>>>>>>>>>>>>
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C.3. Smal and Interval Taylor Diviuton Operatora.

(' IT DIV.LIB - RIM. AND INTERVAL TAILOR DIVIDE (((((((

Coctentat

T/ K OPERATOR Mt (K WITEGRo Ts TAILOR) REG : TAILORs
K T V PERATOR /(Ts TAYLOR, Xt INTEGER) RES s TAYLORI
a T OPERATOR /(Rs NMI Ts TAILOR) RI9 a TAILOR;
T R OPRATOR / (Tt TAILORl R3 REAL) RIB a TAILO0R,
T/ T OPERATOR / MeA T~a TAILOR) RUB i TAILORo
K /IT OPERATOR /(K: INTUGRi T: ITAYLOR) RES a ITArLIORr
IT X OPERATOR /(Ts ITAYLORI Ks INTEGER) RIU s ITAILORI
I / IT OPXRATOR Ms(K INTERVAi T: ITAYLOR) RMS i ITAYLORI
IT /I OPERATOR /(Ts ITAYLORi Ks INTERAL) RIB s ITAYLORI
IT /IT OPERATOR /(TAs TB: ITAYLOR) RIU a MTYLoDR

OPERATOR M T TAYLOR; Ks INTEGER) RIBU TAYLORI T /K'
VAR Us TAILOR, Is DINTIPE

BEGIN
IJ.LENOT a- T.LENGTMh
U.T s- T.Tg

I, K - 0
THEN BEGIN

WRITILN ('ERROR: DIVISION OF TAYLOR VARIABLE BY ZERO' )
SVR (0) END C.RETUM TO OPERATING SyrT='

ELSE BEGIN
FOR I :- I TO U.LEUON CIO U.TC!II I- T.TC1II / K

ENDv (* ELSE *

ENDo TAILOR /INTEGER
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OPERATOR /(Ks INTEGER: Ts TAYLOR) 338 s TAYLOR, x I/
(0 sequiress VNWULL)
VAR U, Ws TAYLOR:

I. J, IPI, REVI DINTYPE
RATIOo IRAW.

U.LE1IGT t- T.L3UOTHI
U.Ts- T.Ti

U.TC s- VRIULLs W.YC s- VIULLi ( 333 RE1SULT AND WORK VECTORS 0

ip T.TCE1) c 0.0
TEN Swim3 ( 3030 DIVIDE *

RATIO 1- 1.0 /T.TC j I
U.TCllJ I- K 0RATIOI

FOR I o- 2 T0 U.LUSOT DO
33GIH
FOR J :- I To (1-1) DO

33013
REV I- I - *7 1;
v.TC(JJ :~T.TCCREV)

Dg ( FOR J *
U.TC(II - SCALP (U.TC. W.TC, 0) *RATIO
WRD (* FOR I 0

3RD (* THEN 0

ELSE IF X <> 0
THEN SWIMW

WRITE ('ERROR: DIVISION BY TAYLOR VARIAL')#
WRITELM (' EQUAL TO ZERO' )a
DVR (0) (0RETUNS TO OPERATING SYSTEM 0

END (* THIN 0

ELSz 3301W ( APPLY L' HOSPITAL' S RULE 0

IF U.LZNGT - I
THEN 89GIN

WRITE ('ERROR: DIVISION WITE TAYLOR VARIABLE' )
WRITELM V' OF LUG'I OW.')l
DVR (0) (0 fTURM TO OPERATING SYSTEM0

U.LENGTH t- T.LENGU Is
FOR I ainl TO U.LENGTH DO

BEGIK
IPI s- I + I;
U.TC1I) I- T.TC[IPi]
ENDI (0 FOR I *)

u s-0/v (tTHIS18A RCURSIECALL)
END: ( IF

END: ( INTEGER /TAYLOR )
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0133ATOR / (Ra3,nALgI, TTATU) 133 tla a aV~ 3/1 0)

(e usqu~eas VRAM 0
VAR 13, W8 !TW&)s

to J7. IPIi wat01113

1.1,- 1.!a

13.10 to VlZ.L, W.10 t- 1311; ( n am"33 . AnD Om vECIoms 4)

ip i.Tell) 0. 0.0

PATIO 2- 1.0 / .1C011
U.!CCl)I- a RATZI
na3 I 1-n 2 To0 13.13391 00

FOR. * 1- 1 0 (1-1) 00
UNiDl
mm I- I -J 1; I

* 1.10(I) am- CAl (U.1C. 3.10, 0) PAI
NED (* FOR I

um.3 IF 1 4)0 0

WRITS ('33301: DIVISION BY TAYLOR3 VAUA1')#

MR ( I3 *)V OOX~~lQBO

21.83 awnBD( APPLY L'3031I!M. 3 31. 0
ip a1.1802283 I

1333 (PEBI O DIVISION WI TATUMLOR 3313L)l
33113ff (RO amz N-)

m1 (0) REUR 3 233 0 033331139 8182U 0

VPDO (* lp

FOR I am 10 5.Lown1 00

ZIl to I *It
1.20(11 a .ICIP1U
Mot (* POP *j

U~0.0 / VfU (1ZIS A UUIY3CA.L

USDo (0 131./ TATUM '

IMa



OPERATOR /(To TAYLORI ii MIA) 315 a TATLORg ( TI R
VAR Us TAYLORt Is DINTYPEI
BEGIN
U.LUIOT s- ?.LXNQT i
U.? a T.Tl
IF R -0

WRI ('ERRORa DIVISION OF TAYLOR VARIAWBLE 31ERO)l
IVR (0) ED (RITURN TO OPERATING SYSTEM)

ELSE BEGIN
FOR I s- I To U.LENOTII D0 U.TC(II s- T.TCCIJ / R

ENDO (* ELSE
Ra I- U

SNDY (* TAYLOR / REAL *

OPERATOR / (TA, TSa TAYLOR) RES a TAYLORi T' / T
(* rpeqiresa VRKULL, SCALP *)

C.THIS OPERATOR ATTEMPTS TO HANDL 0 / 0 SITUATIONS USING L' HOSPITAL'S RULE

TA.TC(1] 0.0 <> 0.0

CAB ~ Ii CASE 2
0.0 ITA/ TS, ERROR

<> 0.0 I CASS 3 CASE 3
I TA/ T3 TA/ TS

CASE 1 18 HANDLED BY RECURSION UKLESS TE OERIS$ LENGTH 15 ONLY 1I0

VAR U. W * TAYLORi
1, J, MP, REVt DIlPE,

RATIO# REAL;

*301K
IF TA.? <> TS.T C'UNEQUAL SWALE FACTORS '

WRITE ('33303 DIVISION OF TAYLOR VARIABLES')i
WRITBLE 0 WITH UNEQUAL SCALE FACTORS )j
SVR (0) C'RETURN TO OPERATING SYSTEM 0

ENDS( IF *)

U.LENT 9 TA.LENOT~j
IF U.LENOTN ),TB.LSWQTK TEN U.LEBN of TD.LEWOTi
U.! s- TA.Tp

U.TC amVNMUL W.TC * VmNULL C' ERO RESULT AND WORK VECTORS 0
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IF TS.TC(1] 0 0.0
THEN SWIM ( CARE 31 USUAL DIVIDE 0

RATIO s- 1.0 /TD.TC1Ji
U.TC01 :- TA.TC!11 * RATIOS
FOR I s- 2 TO U.LENGT DO

BEGIN
FOR. a - I TO (1-1) DO

ORIGIN
ME :- I - .7 + i

v.TcC.7I t- T.TC!RNv)
ENDS (* FOR j70

UJ.TClI I- (TA.TC1I1 - SCALP (U.Ty. V.TC, 0)) & ATIO
END (* FOR I *

END (0 THEM 4
3ELSE IF (TA.TCjIJ <> 0.0) OR (U.-LENGTH 1

To=N swim3 CAUM 1: BMW ERE IDUTICALLY ZERO,
OR CASE 2t ?A / 0 *)I

UNITS PX RRORs DIVISION 3Y TAYLOR VARIANJE')i
WRXTEUI (I EQUAL TO IS130' 3
SYR (0) (0RETURN TO OPERATING SYSTEM 0

END (0 THEN '
ELS EGIN1 ( APPLY L'UOSPITAL S RULE 0

IP U. LENGTH - I
THEN awlIs

WRITE ('33301. DIVISION WITH TAYLOR VARIASLE' 3v
WRITUI. (I Or L2061m ONE-,
SVR (0) ('REORN TO OPERATING OYSTER 0

ENlDS (* IF

CI.LEfNGM TA.LMIGT - It
V.1.130TH a-U.LENGTHI
W.T a- U.Ts
FOR I a- I TO U.LENGTH DO

8EGIN
XI + I 1i
U.T1C(II- TA.TC(IPily
M.TC1I) t- TU.TClIPII
VMSJ (* FOR1I

U a- U/ 1 THIS 1 A RCURSIVE CALL 0

END, (0IF0

335 - US
ENDS (0 TAYLOR /TAYLOR '

* OPERATOR / (i INTSGUs Ta ITDJLOR) 336 a ITAYLORi (0K IT 0

* 1' Rsequirems LYNSULL, ISCALP 0

VAR 0,Us IA YLORI
* I. .J. IPIi RRVa DINTYPRO

RATIO: INTERVALI

£i.LENOTE s T.LXNGV1E
U.TaisTY

9-T a- ZYNJIULLI N.TIC s- rIUPLLi 1' 333 RESULT AND WORK VECTOR8
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IF NOT (0.0 IN T.TCCIJ)
TH3N SEGINM NORMAL DIVIDE 0

RATIO I- I / T.TCC Js
U.TCf 1 s-XK RATIOP
FOR I v- 2 TO U.LSMWE DO

BEGIN
PoR .7 I- TO (I-1) DO

REV 2- 1 - 3 + I~
V.TCti 13-a T.TC(RlEV)
mUms (0FOft *)

U.TC[IJa- IuCAxLP (tlTC, u-TC, 1) *RATIO
END (*FORI 0

END (* mw*
ELSE IF (K 0 0) OR (T.YcC J 0 lT(.)

THNi BEGIN
WRITE ('ERROR: DIVISION BY ITAYLOR VARIABLE')
WRITELM (I EQUAL TO ZERO')i
SVR (0) (0RETUN TO OPERATING SYTM)
END (* 0)Z

ELSE BEGIN (0APPLY LEHO6PITAL'I NOLE
IF U.LENGTU - I

THEN BEGIN
WRITE ('ERRORs DIVISION WITH ITAYLOR VARIAL'),
WRITELN V' OF LENOT ON.');
SWR (0) R'RTM TO OPERATING SYSTM 0

ZMDs (* IF)

U.LENGT s- T.LENGTU 1;l
FOR I :-I TO U.LZNGTU Do

IPI :- I + 1I
O.TC(IJ s- T.TC(IP1]
ENDl (0 *PFO I *0)

u a 0 /U (0THIS IS A RECURSIVE CALL 0

3NDg ( IF 0

ZND (* INTEGR / ITAYLOR)

OPERATOR /(Ta ITAYLORI Ks INTEGR) RNS I TAYLOR: ( IT /K )
VAR Ut ITAYLORI Is DINTIPE,
BEGIN
U.LENWIU s- T.LEUGTU,
U.! t- T.T?
IF K - 0

WRITELK ('ERRR DIVISION OF ITATLOR VAAB Y ZERO')j
WiR (0) END (0 RETURN TO OPERATING SYSTEM 0

ELSER o I - I To U.LEmnGT Do U.TC(Ij I- T.?CfIj/ K;

ENMi ( ITATLOR /INTEGER 0



OPERA ms /(:ITrVAm s Ts ITATLOR) RuB g ITAILORo I /IT )
Saquiress IVRWLL, 11CM.? '

VAN U, 98 ZTAVLORI
1. J. MPe REV8 DINTMI~
RATIOr ITERVAL;

V.LGTE t- T.LZNOTR
U.Tsn T.Ty

U.?c t- IVURULL: W.Tc so IV19uSLI ( ZEXRESL SEEM AD WORK VECTORS)

ip woT (0.0 IN T.TCV))
THEN BEGIN (NOYWL DIVIDE

RATIO s- I / T.TC11,
O.TCC1 t- X RATIO#
FOR I t- 2 T0 U.LUOII DO

FOR .7 S- I To (1-1? 0O

REV t- I - j + Is
W.Tcri.7 S T.2c[R3j
awl (* FOR .7 *)

U.TCI s- - 13CALP (U.TC, W.TC, 1) *RATIO

END (w 0R I
Do (* THE )

ELSE IF (K 0, INTIT (0.0)) OR (T.TC(11I 4 F? (0.0))

WRITE ('RMGRS DIVISION BY ITAILOR VARMALE' )p
wRITEI. (I EQUA To ZEROIt
mY (0) (REURN TO OVERATING SUMEE*
ED (o tHU *

RLse Owl" ( AIPPL? L' HOSITAL'8aML
IF U.LENGTE 'f 1

WRITE ('ERROR: DIVISION WITH ITATLOR VaARzA&'),
WRITE!. V OF LENGTH 05.')i
MYR (0) (* RETURN TO OPERATING SYSTEN M

ENDS (* F'

U.LENOT s- T.LEUWI - Is
FOR 111 TO0 U.L3 DO

Ill I- I + Is
U-iV[II I- T.TC1IPI)
ED?~ (* FOR *)

U in0/U( Tole is A WrEIVE CALL *
END? It1

ENDs C INTERVAL /ITAYL0R *



OPERATOR / (Ts ITAYLOR; K: INTERVAL) US a I"AYLORI ( IT / I )
VAR Us lIATLORP It DINTYPSi

BEGIN
U.LENGTE t- T.LNGTff;
U.T s- T.T
Ip 0.0 IN K

THEN BEGIN

WRITELN ('ERRORs DIVISION OF ITAYLOR VARIABLE BY ZERO')
SVR (0) END (* RETUN TO OPERATING SYSTM M )

ELSE FOR I :- I TO U.LENGTH DO 0.TCIIj s- T.TC[I) / KI

RS :- U
ENDo (* ITAYLOR / INTERVAL 0)

OPERATOR / (TA, TBs ITAYLOR) RES : ITAYLOR; ( I IT / IT b)
(0 Requires: IVINULL, ISCALP )

(0 THIS OPERATOR ATTEMPT8 TO HANDLE 0 / 0 SITUATIONS USING L'HOSPITAL'S RULE

TA.T2C[] - 0.0 <> 0.0

I I CASE2
- 0.0 I TA' / TB' ERROR

TB.TCjt) I
>0.0 I CASE 3 CASE 3

I A/ To TA /T

CASE I IS HANDLEID BY RECURSION UNLESS THE SERIES LENGTH IS ONLY I 0)

VAR U, V i ITAYLOR;
I, J, IPI, REVs DIMTYPEu

RATIO: INTERVAL;

BEGIN

IF TA.T <> T (0 UNEQUAL SCAi FACTORS 0)
THEN BEGIN

WRITE ('ERRORt DIVISION OF ITAYLOR VARIABLES')i
WRITELN (' WITH UlEUAL SCALE FACTORS'),
SVR (0) (0 RETURN TO OPERATING SYSTM 0)

END; (* IF 0)

U.LENGTH : TA.LENGTHj
IF U.L3NGTH > TS.LENGTH THEN U.LNGTH *m TD.L ENGT

U.T sm TA.Ty

U.TC t- IVRllULLi W.TC ,, IVRNULLi (0 ZERO RESULT A1ND WORK VECTORS )
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IV NrO (0.0 IN T.C[1))
TUNM EGIN ' aSE 31 USUAL DIVIDE )

RATIO I- I / Tb.?CtI)s
U.?c11) %- TA.TC111 * RATIO:
FOR I t- 2 TO U.L M 00

BEGI

REV 8z 1 - j+ Is
W.TC(J1 t- TE.TCIRSV1

NI (* FR j *)
U.TC11) s- (TA.TC[Ij - ISCALP (U.7C. W.!C, I)*RATIO
awD (* FOQI'

Eo (t THEM'*)
ELSE 17 (U.LENOT - 1) OR

(NOT (0.0 IN TA.TCII) OR
(TA.?C1tI <. 1311?T (0.0)) oRt
(TS.TC(II 0 1311! (0.0))

THEN BEGIDNC CASE 1: BOTE SERIES IDENTICALLY SER,
OR CASE 2s Th / 0 *)

WRITE Q ERROR: DIVISION BY ITAYLOR VARIABLE'):
WRITILI C' EQUAL 20 Z9RO')1
SWR (0) 1* RETOE TO OPERTZW SYSTEM)
END (* TEEN *)

ELSE asEN APPLY L'EOSPITAL'S RULE)
(ONLY IF ID? - sup - 0 '

IF O.LGTU - I
THEN awlsK

WRITE ('ERROR: DIVISION WITH ITATLOR VARIABLE')g
WRITEIM (, OF LZWG2R ON.'),
SIX (0) 1'RETURN TO OPERATING SYSTM '
END$ (* IF'

C.LMIMT t- TA.LEDGT - 1;
W.LENQTH t- U.LZNGTH

*1 .1 t- U.'?:
FOR I t- I To U.LENGT Do

BEGIN
IVI I- I + Ij
U.CjII v- TA.Tc[IPl] i
W.1'C[I) 8- TB.TC[IPI)
ENDi (* FOR I)
U /VC THIS IS A RE2CURSIVE CALL)

ENDi (IF'

END# (' ITATLOR / ITAYLOR '

C'END OF RI'? DIV.LI3 >>3>>)>>>> '>3>>> - >>>>0>,o
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C.4. Real Taylor Power fteratorm and funotlons.

(o RT WOV.L13 - REAL TAYLOR POUR3

O'ntontat

TMQRMT PuNCTIOvMIR (Ts TAYLOR) 2 TAILORF
IBQR(T) FUNCTION TUQRT (Ts TAYLOR) s TAILORi
131(T) FUNCTION TWll' (Ts TAYLOR) s TAYLOR;

K K OPZPATOR' (SE.2 3XPONXW t INTUOUR) RUE a IRTSM;~
a" K OPERATOR" (USX: RIALs 31303331: INTEGER) R33 a RCAL;v
It R OPRRATOR "(BABB, LIPOMUNT REAL) RUS a DIAL;
IK It OPSMATOR" (BADE: INTSME; 31303331:& RIAL) RED v WIALl
T ' K OPXRhTOR" (SIM3: TAILORI 31303331 INTEGUR) R3U I TAYLORI

T R oPrTOD (M3:~ TAYLORs UKPOIMM~ DEAL) RUE t TAILOR;
it T* OPERPATOR "(SASE: REAL; XXPOUITt TAYLOR) -N t TAILOR;
K *' OPERATOR (Dhm3: INTEGER WO3M33: TAILOR) RU28 TAILOR:
T "T OP1ERATOR ~o(BASS, 31101133 TAYLOR) 33U t TAILOR#

FUNCTION TBQR (To TAYLOR) a TATLOR; ( 139(T) '
(* Facparess INIULL, SCALF, 93
VAR 1, J, K. RAE.?: 0131113

X, Yo RVUCTUN:
Uo TAYLOR;

4~ j-a VNWMLLx I :- INIULLt
U.LGTU a- T.LGTE;
U.?am.1
i.~TC a-VPSULL;

U.TtlJm 33.(T.TC1]);
1(01 I-T.TC(IaI
FOR K t- 2TO U.LEJWeIE00

RALI? I DIV 2o
POR j s I T* HALF DO

I so K - J3+ 1;
115) s-T.TCIII' I , )

U. ctK) a- 2.0 *SA ,Y ~
ZIP K MOD 2 - I ?U3P

v.TC(KjtaU.IC(KI @OR3 (IC(ALPJ)

4~" U'*,4



FUCIO URT (To TAYLOR) aTAYLORU TOWR(T) '
(' ~quiresa VRIULL, SQRT* 5gM, SCALP

VAR 1, K, INDEX. INDX2z DINTYPE:
RATIO a REAL;
I, Y : RYECTORt
U a TAILORi

IF (T.EC0tJ < 0.0) OR
((?.TC(1J - 0.0) AND (T.LXMT >- 2))

WRITELI
WRITEI ('ERBOR: SQUARE ROOT Or TATL0R VARIABLE <- EERO.')o
SVR (0) EUDi C REfm TO OPERATINQ SalE '

U.LEUGTE :- T.LEUWU
U.T I- T.T;
2 1- VR2IULL Y s VRMULLS
U.?C i-VNJUr

o.T11U s- 5gRT (T.TC(11I)i D'IAL.)

IF U. LKNOTE )2 TEN BEGIN
RATIO s- 1.0 /(2.0 *U.TC1J1),
U.TC[2J a- T.TC(21 *RATIOS

IF U.LEWGTU >- 3 TUEN SEWIM
U.Tc131 s- (T.Tc131 - MQR (U.TC(21)) RATIOs

FOR K s- 4 TO U.LENOTU DO
BEGIN

A~if X ROD 2 - 0

INDE s- It DIV 21
) IND12 %- INDEX - I#

7 31[INDZ21 t- U.TC(IKDUJ
I=D (*'THUN

INDEX :- %'K + 1) DIV 21
U.Tc(RJ SQl (U.TcIEXJ)

ENDo (* IF)
FOR I UITo IND2 DO

SEIN
IKfX s- K -I

ENDS C FOR I '
U.TlKJ s- (T.TC(KI - U.Yc(KJ -2.0 $ CAIP (2, T, 0)) 'RATIO

END (t'FOR K)
END (If U.LE T - 3'
ENDi (IF U.LENOT- 2'

MTR Vm
ENDs (FUNCtIoN TSQRT (TAYLOR) '
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FUNCTION TEE? (Ts TAYLOR) s TAYLORa C TRUll!)

(* Requiress VRIULL, SCALP '
VAR J7, K, INDEX: DIMTYP~j

RATIO: REAL;
X t RVECTORo

u 2 TAYWORI

BEGIN
x VRNULLi
U.LEUGTH :T.LENGTHj

U.T 2=T.Tg
U.TC :VRNCLLI

U.TC[1] s- ZXP (T.TC(IJ)i

FOR K :- 2 TO U.LENGTH DO
BEGIN
RATIO t- 1.0 / (X - 1);
FOR J s- 2 TO K DO

BEGIN

INDEX 32 K - 3 + I1
X(INDEXI :-T.TC(JJ *(J 1) *RATIO

END; (*FOR J*)

U.TClK] :- SCALP (U.TC, X, 0)

ENDI C* FOR K)

ENDi C FUNCTION TEl? (TAYLOR) '

OPERATOR '(BASE, E9XPONENT : INTEGER) RESa INTEGERS C K K *

VAR Uz INTEGER;

BEGIN
IF EXPONENT <0

THEM BEGIN
WRITELN ('ERRORt INTEGR NEGATIVE INTEGER'),

STE. (0) CRETURN TO OPERATING SYSTEM)

IF BASE 0
THEN IF EXPONENT - 0

-4 THEN BEGIN

WRITELN ('ERROR: ZERO ** ZERO')r
SVR. (0) C'RETUIN TO OPERATING SYSTEM

END (* THENM*
ELSE U s- 0

ELSE BEGIMN NORMAL BRANCH *
0 1- 11
WHILE EXPONENT )1 0 DO

BEGIN
IF EXPONENT MOD 2 - I THEN U :U *BASE
EXPONEN t- EXPONENT DIV 21
IF EXPONEN > 0 THEN BASE 2= SQR (SE)

ED(a WHILE a)

END (* ELSia

ENJD# INTEGER "INTGER a
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OPMRTOR **(BASE, REALS EXPONTS ZNTSQXR) UES a RELj R' .
VAR Ut REAL,

IF BAS 0.0
TI ip NXpuMM - 0

WRITELD ('33301: Z310 'ZERO')a

SYR (0) 4'RETMN TO OPEMrATN SYSTM
END (O TEEN *)

ELSE IF VXPON31R? C 0
TIEM BEGIW

WRITE~lN

WRITELE V'RWWRs ZESO * N3GTMI3)
Son (0) (*RETURNI TO OPERPATING SYSTM

ED(* TM i
OWNU t-0 (zEMtO *POSIUIVE

ELSE IT BASE -1.0 TRWN U := 1.0
ELS BEGlN" BASE <> 0 OR i. USUAL BRANH *

EXPONEN u-As (EZPONENT)l
IP EXPONEN - I Tm U BASE
ELSE IF EXPONENT n 2 T=EN U tsQl (mAEz)
ELSE9 BEGIN

U 1- 11
WHILE EXPONET > 0 D0 C' XPOEN - 0 falls through

BEGIN
IF XPONENT NOD 2 - I THEN u s- u * sAsth
311033! t- EXPONENT DIV 21
IF EXPONENT > 0 THEN BROS ta SQl (BASE)

IF "M EUP THEN U :u1.0/U

ENDg C REAL e n INt*G )
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OPERATOR (BASE, EXCPONENT: REAL) RES x REAL: it R R

(* flhquirena R"*K, SQR, ZEN. U4M*

VAR Us RAL:
K: INTEGER?

BEGIN
IF USEB - 0. 0
THEN IF EXPONENT - 0.0

THEN BEGIN

WRIT1LY (VERNOR: ZERO 'ZERO'):

SYR (0) (RETURN To OPERATING SYSTEM

END (* THEY *)
ELSE IF EXOMENT < 0. 0

TENBEGIN
NRITEI*:
WRITEN (ERROR: ZERO "NEGATIVE')

SVN (0) C'RETURN TO OPERATING HYSTM

END ('TEEN '

ELSE U s- 0.0 C'ZERO "* POSITIVE '

ELSE IF BASE - 1.0 THEN U a-1.0

ELS EGIN C'BASE -0 0 OR 1. USUAL BRANH

K t- TRUNC (EXONENT),
U S- BSEo ** K: C USE REAL ** INTBGR'

ir EXOMENT 0) K
THEN IF BASE C 0.0

THEN BEGIN
WRITELNi
WRITEWM ('ERROR: NEGATIVE *" REAL'I:

SVR (0) (* RETURN TO OPERATING SYSTEM '

END (* THEN '

CUSUAL BRANCH
ASSERT: BASE ), 0, -1 C EXPONENT K < 1I'

ELSE U U M 1 ((EXPONET K ) ML (BASE))

RIB s- U
END: C REAL ** REAL 0

OPERATOR" (BASE: INTEGER: EXPONENT: REAL) REB a REAL: ( K 'R 0

(* fiaquireE: R**R, R"*K, 89R, IMP, UM t)

VAR Us REAL:

BEGIN
U I- BASE

RES zU 00 EXPONENT ('USE REAL 'REAL 0

END;( INTEGER 00REAL )
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O1MK!OR ** ("atE TAYLORS EKPOMIs zWM ) RE S TAY R ( I z )
* bqulirest VKWL R**K, MR, ?T, CALP, YIDIESO(?) *)

( DECISION ETABL for speclal camesa

EXPOEmlYt 0 1 2 >2 ( 0
------------------------- - -

Box I II I
BASZ.YC - 0 Under. S DAW BQR (DADE) - 0 U0ef. I

-- -- ---- -- ---- -- ---- -- -- -- - -- -- -

Box 2 box 3 Box4 I aS IIIII I
BAS.TC(1] - 0 1- BASS 8QR (RAM) by nlt. Undef. I

I ox6 IIIII I
[I] <> 0 1 - BASS 8QR (BABE) I By recurrence I

Box 6 is the usual mtho,

VAR UTAYLOR I

RATIO R IAU
Sl X, Jb , m : DIKTYPZp

U.LZNM s" ISEI.LWI
U.T s" S.Ty

(* Zo RESULT AND WORK vE OS
O.TC z- Vl O]i V s- VRNULs

IF T INT EBRO (IMME) Decision table lox

TlfM BEIN

WRITMIs
WRI,. (RMORt ZERO * ZERO');
SVR (0) * t TO OPERUiTfG SYSTEM )
BID~ (* .- *

MAE (w U.TC Is already -- 0

ZL9I IT M PO1W -0 Oecision table Box 2)
F TOW U.T1) a- 1.0

EJ IF MOMENT1 I ( Decision table Box 3)

ELSE IF 110 - 2 (* Decilon table fox 4 ')
TM U t MIR (BASE)
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ELSE if 9ASE.TC(11 0 (' Decision table Box S
THEN~ IF ExpoNEN < o

TUEN BEGIN
WRITEIs
WRITLN ('ERROR& ZERO TAYLOR VARIABLE ** NEGATIVEI)i
SVR (0)( RETURN TO OPERATING SYSTEM)
END (* THEN)

ELSE BEGIN C.Use repeated multiplications of series)
U.TC(1] a- 1.01
WHILE MXONENT > 0 DO

BEGIN
IF EMOMENT MOD 2 -ITEEN U t- U *BAM~
EMONENT :- EXPONENT DIV 21
IF MXOMENT > 0 THEN BASE I- TSQR (BASE)
ENM C WHILE '

END (* ELSE '
ELSE BEGIN (*Decision table Box 6. Usual branch)

U.Tc(11 BASE.TC1I '* EXPONENTS REAL *' INTEGER '
RATIO :1.0 / BAS.Tct1I
IF U. LENGTH >- 2 THEN BEGIN
U.TC12] t- EXPNENT * U.TCC11 * BASE.TCC2I * RATIOo
FOR K s- 3 TO U.LENGTH DO

BEGIN
FOR J s-1 TO K - I DO

REV XK- J+ 11
VIJI S ASE.TC (RZV] (EXPONENT * (K - J) - J +~ 1)1
END, (FORJ *)

U.TC(X] RATIO * (EXPONENT *SCALP (U.TV, V, 0)
END (* oatit*

END C'IF U.LENGTI >- 2 '
ENDg ( ELSE '

RES :- U

END# (' TAYL0R *'INTEGER 0

( T 'R )
OPERATOR ** (BASES TAYLOR$ EXPONENTI REAL) RES t TAYLORI

C'Requires: VRNULL, T*'K, R*R, R'*K, T'T, TSQR, TSQRT, SCALP,
TIDENT ZERO, TIDENT CONSTANT 0

CDECISION TABLE for special cases:
Not Int.

EXPONENT: 0 1 2 or 1/2 Znt. >2 or <
+--------+------------------------------------------------

Iboxi I Box 2 Box 3 Box 4 BoxS 5

SASE.TC - 0 IUndef. I- BASE SQR or SQRT I 0 IUndef.

BASE.TcC11 <-0 I 1 1 - BASE I SQR or SQRT T" X Undef.
I---------

BASE.YC[1j > 0 1 - BASE ISQR or SQRI T 1 K Irecur.
*--------------------------- --------

Boxes 4 or 6 are the usual method. 0
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VAR U a AYL.ORO

RAIO a MAL
I a INemER,
1, J, Mv DINTM1h

U.LUIG'I s- BMS.L3NGTU

(XR R30ESULT AND WORK VZCTORS 0

U5TC s- YNIULLU V t-VMfLL:
IF EPIUM1 - 0.0 (* Decision table Box 1 0

TRN IF TZDloaEn DR (SB)
limN BaGn

WUITRIM (ERRORS ZERO ** 3330'),
an3 (0) RETURN TO OPERATING SYSTEM '
PRO (* TIIE *)

RIME U.TC1i) a- 1.0
ELSE IV VIOUU - 1.0 ('Decision table Box 2 '

-9 V a - DAME
31.53 IT 3330335 - 2.0 (Decision table Box 2 3

TRIP U I- MR9 (BASE)
ILSE IF 99PWSHET - 0.3 (*Decision table Box 3 0

TM3 U I- 293? (BaSE) 4'Eror it BASE.1C(1I <- 0.0 *

I I- TRWE (EXINT), Decision table Box 4 0

IF (EXPOMEN - 1) AND (I >2)
TMEUaBSO ZTAYLOR * IWGR e)

ELNX IF BASX.TC11 <- 0.0
TWON 33GEV Decision table Box 5 '

4 WRITE ('ERROR3 ZZRO TAYLOR VWARL 00 NEGTXVE' 3,
331231*4 VOR NOW-ZNTER' 3:
513 (03)4 RETURN TO OPERATING 9YST82 0

END (* TUW
ELSE BEGim Decision table box 6. Usual branch 1b)

U.Tc(11 *SASE.TC1?j 00 ONYT M3032 0RAL M0RAL 0

PATIO a.1.0 / 5BR.Tc(113If IF' U. LINGTR ), 2 THOW 3301N
0.20(21 s- 1033W *0-T * BMSE.Cr21 RATIOo

D FOR V - 3 TO U.L=KGI DO

FOR J It 1 DO

V(J a AS.TCEREVI * (EXPO3MW! M JK-.) J +, I)i UgD) FOR .7 * )
tU.YC(KI s PTIO 0 SCALP (VJ.TC, Ve 0) /(K -13

END (* FORKX0 )
END (IF U.LENGE>-2)
END (0 ."E

ENMI( TAYLOR 0REAL 0



OVEMATOR (BA2SE DEALt ZPOU:M~ lTLIOR) 335 s ThILORs O 1**I 0

A (' bquireat VRSULL. R**R. R**K. goE, in, SCAMP
VAR J, ReINEX DINITPs

RATIO, WOB AMI 3.flLP

U aTAILORS

U.LXGTU :-EIOUTLUGU
U.! I-UPOUEM.Tf
U.2C so VUSULLi
U.TC111 2- BASE 00 EIPOUEI.TCCII a

(* REAL 00REL my generate errora )

IF HOfT TIDDUNCOSISTANT (EIIOMEW) THE BEGIN
IF QAS <-0-.0o

THEM BEGIN

*1WRITULE ('ERNORm IN REAL **TAILOR: BASE <- ZRR')v
SWR (0) (0 RETUNS OPERATING SysTEN t

m (* y 0

LOG BAME so I (SASE)I
ramz so 2 TO U.LNIGI DO

PATIOa-.0/(- )
FOR J7 a- 2 TO K DO

INDEX a-9-i + It
11INDEI s- ELPOUDS.TC[JJ W . 1) RATIO
END (* FRc Ji*

U.TCjKI so ZOG BASE * CALP (U.TC, Re 0)
-o (* FORK*

MIND (* ELSE 0

XWDI (* IF'

aso, (* REALL * TAYLOR *

OPERATOR * (BASE: INTEGERs ZZVONW~t TAYWLR) RES TAILORg T )
(* Requires VNWULL# RM. Rt*R. RK.Z OP. LE, SCALP)
VAR Us RE1ALY
BEGIN

RO 0 ** RXP3ONM USE REAL 00TAILOR

ED; f INTEGER 0 TAIOM
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OPREUlOS (DUNE, MXOMENTS TAYLOR) RU3 I TAYLORS('1

BEGIV
IF T ZDENTCCOMA" (11105511)

-ia U -o BanE ** EZPOUEN1c(1) (* gT R0~

WLSn IF T I311 COUIYAUNT tunS)
? m s AS.YC11 *0 MMOE ( n US I

win3 IF SASLIC(lI <- 0.0
TIMu noiw

A WuXM I~
WRIULS (1330Rt TAO SAWN 333')a
313 (0) (ANS T0 OpURAIzUQS 3153K
END (* 1TM

IF SAML? 0)10t1.
Im sEGIN

WRnswi
VIII! (IMUSs ** Of TYLOR VAALIS WMf' )#
WRZYSN( UNUQUM. SCALN FW1013 ')
an1 (0) C'RMfS 10 OFORATING SISEN
NW (* If'

Ut 11 (giMl
ENDI (* ELSE

ZWl( AYLO' ** AYLOR '

( W OrD 01I? PW.LIU 0

I MI - ,



C.S Interval Taylor Power Operators and Functions.

IT _POW.LXB - INTERVAL TAYLOR POWERS <<<<<<<<<<<

Content.:

ITSQR(IT) FUNCTION ITSQR (T: ITAYLOR) .ITAYLOR;

ITSQRT I FUNCTION ITSQMT (T: ITAYLOR) : ITAYLORi

ITEXP(IT) FUNCTION ITZXP (T: ITAYLOR) : ITAYLOR;

I X OPERATOR "(BASE: INTERVAL; EXPONENT: INTEGER) RES :INTERAL

K "I OPERATOR '(BASE: INTEGER; EXPONENT: INTERVAL) RES :INTZRVALi
I "I OPERATOR '(BASE: INTERVALi EXPONENT: INTERVAL) DES :INTERVALi

IT 'K OPERATOR **(BASE: ITAYLOR; EXPONENT: INTEGER) RES : ITAYLOR;

*IT "I OPERATOR "(BASE: ITAYLORi EXPONENT: INTERVAL) DES : ITAYLOR;

K IT OPERATOR "(BASE: INTEGER; EXPONENT: ITAYLOR) RES : ITAYLOR;

I 'IT OPERATOR '(BASE: INTERVAL; EXPONENT: ITAYLOR) RES : ITAYLOR;

IT '*IT OPERATOR '(BASE: ITAYLOR; EXPONENT: ITAYLOR) RES : ITAYLOR;

.............----------------- s...s ........................ .. ..........

FUNCTION ITSQR (T: ITAYLOR) : ITAYLOR: ( ITBQR(IT) )
C'Requires: IVRNULL, ISCALP, ITWNTCONSTANT(IT). ISQR '

VAR I, J, K, HALF: DII4TYPE;
X, Y: IVECTOR;

U :ITAYLORI

BEGIN
X :- IVRNULL; Y %- IVRWULL;

(J.LENGTH :- T.LENGTH;
UT T.Ti
U.C IVRNULL;

U.TC(1] :- ISQR (T.TC(1]);
IF NOT ITIDENTCONSTANT (T THEN BEGIN'IX(1] : T.TC(1];l
FOR K :-2 TO U.LENGTH DO

BEGIN
X(K) T.TC[I
HALFT K DIV 2;

FOR J :I TO HALF Do

BEGIN
I :- K- J + 1;
Y[JJ T.TC[I3
END; (~FOR J *

U.TC(J 2 *ISCALP CX, Y, HALF);
IF K OD 2 I THEN

BEGIN
HALF III HALF + 1;
U.TC(K3: U.TC(K] + ISQR (T.TC(HALPI)
END (a IF *

END (* FOR K 0

END; ~aIF NOT ITIDZNTCONSTANT CTM'
ITSQR :U

END; C FUNCTION ITSQR (ITAYLOR) 0
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FUNCTION ITSQW? (Tt I!AYLOR) a TAYWOR: ITSQW?(IT)
('Requiress IVN=f. IBM, IT WERNT CON8?ANT LIT),

I8QR, IUVALV -
VARXI, K, INDEX, lN0X2t DI~f~iU

RATIOs INEVALl
* X, y IIVCORI

U s ITAYWORi

swGim
IF (ZINr (T.TC1]) < 0.0) OR

((uNF IT.TC1I) -00) AND CT-LENQTU >- 2))
TUEN Swim3

WRITHIN:
WRITEIN ('ERROR: SQUAE ROOT OF ITAVI.OR VARIARE <- ZERO.'):
SVR (0) END; R' ETURN4 TO OPERATING SYBTSK)

X ,IVRULL: I Y IVRULL:
U.LN= s- T.LXMGTN:

*1U.T i- T.T#
U.Tc t - IVRKUL:
U.TC.O1 %- ISQRT (T.TC(1J): C INTERVAL '

IF NOT ITIWENTCONTANIT (T) THEN BEGIN
RATIO s- I / (2 * U.TCIjl)j

IF U.L9tIGTft >- 2 THEN BEGIN
U.Tcr21 :- T.C2 0 RATIO:

IP U.LENGTR >- 3 TUEN BSGIM
U.TC(31 :- (T.1v131 - MSR (U.TC(2D) *RATIO;

FOR K t- 4 110 U.LENGT Do
BEGIN
IF K MOD 2- 0

-4 THEN BEGIN
INDEX :- K DIV 21
INDX2 t- INDEX - 11
XtINX2) :- U.TCCIMD9X]
EN (* THEM '

ELSE BEGIN
INDEX s- (K + 1) DIV 21
V.TClXI , ISQR (U.TC[INDEXJ)

END; (* IF)
FOR I :- I TO INDX2 Do

BEGIN
INDEX :- K - I:
YrII o- U.TC(INDE9XJ:
ENDs (* FOR I *)

U.TC(Kj :- (U.?C(KI - 2 Z SCALP (X, Y, XNDX2)) *RATIO
END (FORK')
END (ITFU.LE16TH >- 3
END IT I U.LXNGTH >- 2
END: C IF NOM IT-IDENT CONSTANT (T) *

ITSQRT t- U
END: (0 FUNCTION ITSQRT (ITAYLOR) *1
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IuWCUON M (T & IYAVLOR) t ITATLORI ~ !
(* flaquireas ZYNUOL, ITZXDEN0U1'MI) !CI

VAR J, K, IND= DINTVPE;
RATIOt INTEVAL;
x a hECTORS

U TATWRI

DKGIV
x IVUNULL,

U.? I- T.Tg
U.1V :- ZYNUOLLi
U.TC(tj s- IMI (T.TC11t))

IT NOT IT EDEN! Comm" M Tm BUz
FOR K : 0ULN! DO

FOR 3 s 2 TOK X D
OEGIII
IUD am K - + Is
x(!NDC s- T.TC(JI * (J - 1) *RATIO
ENDl FOR J

U.TCjK] t- ISCALP (U.TC* Xt K)
END C* FOR K'

END: 17 IFNO IT IDSNI CONSTANT (T))

330: (0 UNCTION ITUIP (ITATLOR) 0

OPERATOR * (BASK: INTURVAL: KIPONUNTt 11NTUOK) RUB INTKRALI
(0Requires: K**K )

VAR Us INTIRVILj

NNG KIN:s DOOLSA~

toBAS9 - 11NTSME and Z3K2CNW )- 0. USO LUTfR IN R33~0
IT (BASK - INMPT (TRUNC (I501 (BAB))) ARD

(EXPONEN >- 0)
TM 0 t- 1111! (TRUNC (1501 (BSASK) KXPO3NM1)

KL83 IF (0.0 IN BAWE AND (ZXPONKN <m 0)
TEEN BeIN

NKXTKLN V ERROR IN INTERVAL 00 INTUoK~s 333 00 <. z=1 )
SIR (0) (* 3103 To OPERTING of$E 0

END WNWUK *
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ELE swim3 ( Usual branch )

IP. 33101M3 - I -M U I- BASE
ELSE IF X310133 - 2 TIM U %-IQR (Dani)

U 2- 1391 (1.0,
WUILE UPOWET )0 0 DO C'203MKM - 0 falls througft'

IF~ MPOUUY MUD 2 - I TM U U. U* ml
EOMV s- 313MM DIV 21

IP UIIOUN 0 -TIM Mam I- loan (BAER)
END (* WHILE e)

ENMI (* ELSM*
IF MW EXI TOW tI /Ua

E3=1 (* INTERVAL 00ZyUoE '

OPEPAOR"* (SABE, 11VTEGRWON ZUPWSIZTERYIL) RU1 j ZUTEVALp
C' NAquiress KR* ft
VAR go 192ERVAI

IF SURE - 1 TUNW U a- 391 (1.0) ( DM I 0

C' OKN -303 139363 >- 0. Use INTEGER 13993 '3T
21L62 IF (EIPOMEU - 1391 (9330 (ISUP (ZOU)))) AND

(lowP (EIMUT) >- 0.0)

TURN3 U S- IWTP? (MADE ' 933 (11111 (ZIONW)))

ELSE IF BASE <- 0 C' 3PUWM contains at least one real nuber '

WRI9ELNI
WRX9EL ('33303 IX INTEGR"* INTMRAL# BUZ 4- 33301 1

mV (0) ('RMT TO OPEWATINO UST 0)

33W (*933un

ELSE U s- IP (310139 ILK (I39?! (MMI))i C'Usual branch '

DD INTUR" IN9ERAL '
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OPERATOR (BAOSE INTERVAL EXWOMW&~ INTRVAL) RZ X INtRVAL:
(* Requiress 1**, I**K, 10'! 0

VAR Us INTERVAL a

BEGIN
IF BASE - INTT (1.0) ?SEN U :- BASB ( ASE I

C'EXPONENT - INGR. Use INTERAL "INTEGER '
BuzE IF ExPoNENT - iNTP (TunC (isup (u310mW))

TRWS U I- BASE "* TUNC (ISUP (EXPONENT))

CBASE - INEGER. Use INTEQR" I~n2ERAL
Slis IF BAME - IwMP (TUNC (ISUP (BASE)))

THEN U V TRUNC (1SUP (BASE)) ** EXPONENT

C'BASE and EXPONNT each contain at least one real number. '
SLOE If lIIM (BASK) <- 0.0

THEN BEGIN
WRITEW a
WRITEIM ('ERROR IN INTERVAL ** INTERVALr BABB <- ZBRO)j
SYR (0) (' RETURN TO OPERATING SYSTEM'
END (* THRN '1

KAME U 3- IXI (EXPONEN * ILP (BASE), C Usual branch '

RES s- U

END# (* INTERVAL "* INTERVAL '

C'IT "K *
OPERATOR "* (BASE: ITAYLORt EXPONENT: INTEGER) RES : TAYLORi

C' Rquires: IVRNULL, I"K, ITSQR, P'IT, rT'IT, ISCAIP,
IT-IDENT-ZRO(IT) *)I C' DECISION TABLE for special cases:

EONN:0 12 > 2 < 0
--------------------------------------------- --------
IBOX I

SBS.TC 0 Undef. -BASE SQR (BASE) -0 Undef.
------------------ 4----------------+-------------------------

IBox 2 IBox 3 IBox 4 IBox 5

0 in BASE.TC[1] I - BASES SQR (BASE) By mult. Undef.
I I 4----------------------

I I I Box 6I

BASE.TCC1I <> 0 1 1 BASE I SQR (BASE) I By recurrence
------------------ 4----------------4-------------------------

Box 6 Is the usual method.
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VAR U sITAVWORI
V IVXCYORI
RATIO zINTERALS
1, J, REV DIKMI

U.LRPMT BE.-LWOTU

(* ZERO RESULT ARD NW VECTORS R

U.TC z-IVUSULLS V t- XVEIULL

IF IT ID0M ZERO (Dan!) (0Decision table Box I

TM IF CIPOMWT 0

WRITSIM ('ERORS ZERO ZXRO')i
SV! (0) (~RETRN TO OPERATING MSUTN
W (* Twf

ELSE (* u.Tc is already -- 0

3=AS IF EXPOWEM 0 (ODecision table Boax 2)
TME U.IC[11 s- INTP (1.0)

ELsE IF XPOUW - I ('Decision table Box 3 '
TME U 1- DAM

=Am EIF WVOWNT -2 (Decision table Box 4'

TMr U $- IMSR (MAN!)

MA.6 IF 0.0 IN BASR.TC!1 C Decision table flox 5 *

TMES IF EZPOMEW< 0

1*WRITIM AJ* M;Z)WRIE ('ERROR: 2ZERO ITATWR VARIAL NETIE)*
Iv! (0) ~RZTURM TO0 OPERATING SYSTM
END (* TEEM*

* ELSEBEG (ai Use repeated multiplications of series

U.RI IWZPM T (0 DO

IF UONEW MOD 21 THE M U swU * RAB!
EXPONENT t- EXPOMW DIV 21
IF UCpOwM > 0 THEN DAM :- ITUQR (SAME
MD0 WHILEM

MD (* WAS3 0I . ELSE 339U W (0 Decision table Box 6. Usual branch UTCIaDU.C XOEW 0ITRA NEE

I 3.U.Tv(21 s- (2XPOMEM RATIO) * .TC[I) * 3AS.TC121,
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FOR K am3 TO U.LENGT DO
BEIN

FO. J 1- TO K - I DO

REV I- K- J+ 11
Vr[iI BASS.TC(REV) (EZPOUM *f (K J .) J +7 )

U.TC1Kj I- RATIO * IICALP (U.!V. Vo K) /(z 1
END (* FOR K*)

END (IFU.LET >- 2)
ENDs Z LSE '

WWIu (* MYALOR 'I~NGR

( IT I

OPERATOR '* (SBSE ITATLORI EXPONENT: INTERVAL) RES a ITAILORi
(Require.: rYRNULL, I10 K, IMRQ, I*IT, IT*IT, IT*K, I**I,

K1*, ISCAL?, IT IDETEERo(IT), IT _DENT CONSTAMM(T)

VAR U tITAYLOR:
V o IV3CTORi
RATIO a INTERVALI
K, .7, REV DINTYPES

U.LENGN a BASE.LENGTUI
U.T t- DAIE.Tj

(* ZERO REULT ANED WORK VECTORS *
U.TC :- IVUSULL V $-IVNEULLI

I IF IT IDENT ZERO (BASS)
THENp;IFIIV(Expom N) <-O0.0

TURN BEGIN
WRITEZL~
WRXTRLN ('ERRORa ZERO ** ZERO');
SYR (0) (RETURN TO OPERATING SYTEM 0

ED (* THU *
ELS (* U.TC is already - 0 *

(0 EPONZNT - INTEGER. Use ITATLOR "INTEGER 0

ELSE IF EMOMENT - INTPT CYRUC (IBMP (EXPONET)))

TUEN U v- BASE ** TROWC (ISUP (EXPONEN))

ELSE IF limNp (BS.TC1) <- 0.0

WRITHI~i
WRITZE ('ERROR IN ITATLOR~ INTERVALI BAS (C EERO.')t

* SVR (0) (RETUN TO OPERATING STEME
END (*TEEM*
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inU a(* Recursio. USUal branch )
U.TCrIj I-n SASE.IVll) ** EKIoNimw NTRAR IKTERMD.'
IF NOr IT IDNT CONSTAT (DAME) TMB

BEGIN
PATIO I / BAS.Yc(1I,

IF U. LNUM >- 2 TIM =EGIN
U.TC121 t- (MIOUENT * PATIO) *U.TC(l] * BAS.TC(2]t

FOR I 1- 3 To V.LUEGT Do

FOR J :- 1 7O 1 - 1 DO

REV iK-J j+It
V[.731r DAU.FCIREY) * (ZPOUENT * (I J ) - .7+ 1)l
VsD FOR i j *)

amT(K RATIO *ISCALP (U.!C, V, 0) / K )
END C* FOR K *)

END (* IF U.LENOH >- 2 '

END (* IF NOT IT IDENT CONSTANT (BABE '
ENDs (* ELSE

R=s t- u
MM)S (* ITAYLOR~ INATERVAL '

x' K IT *
OPENATOR ** (BASE: INWOES EXPOMENT ITAYLOR) RES aITATLORI

41' Asquross IVMNNUL K"!I, K'*K, IM*,
IT IDZW COWANM( IT) * ISALP

VAR 3, K, INDEX, DINTTWI
RATIO, ZOO DAME INTERVALj

U ITAYLORI

BEGIN

U. LENGT g XPCUNTr.LENGTR
o.? irn POUEW.T5
U.Tc IVUNULLa
U.TC1tJ aga AD " POWNM.Tc(t1i

(' zCURn INTERVAL - may 9eaoratt errors

IF NOT IT XOIN! CONSTANT (EXPOMMN) THEN BEGIN
ip BSEz <. 0

IIRITELH ( ERROR IN INTEGER ** ITATLORs BADE <-n SM'
anE (0) (RETU TO OPENAIM BYBS
END (ftTMi ft)

ELSE IF UASE rnI NU.TCi)l I- IN!?? (1.0)



31L8E BEGIN
LOG SABE i IE (INTPT (BAB))j
FOR K a-2 To U. LzpGTH Do

BEGIN
RATIO I / INMP (K - 1)g
FOR J7: 2 To K DO

BEGIN
INDEX :- K - J7 + 1I

X(INDEX3 :- EIPONENT.TCEJJ (J7 1) RATIO

ENDI (* FOR. J0)
U.TC(K) t- LOG BASE 0 ISCALP (U.TC, X. K)

END (- FORK')
END (* ELSE *

END; (* IF)

RES t- U
END: (* INTEGER 00 ITAYLOR 0

OPERATOR ** (BASEs INTRVAL1 EXPONENT: ITAYLOR) RES i ITAYLom:

(0Requlres: IVRNULL, K"*I, K*K, ILN, I**, I'*K,

ITWENT CONSTANT(IT), ISCAIP )

VAR J, K, INDEX: miNYPE

RATIO, LO0G BABE: INTERVALI
X : IVETORY

U t ITAYLORI

BEGIN
x IVRNULL;

U LENGTH : XP0NMN.LENGTHi

UaT EXPONZNT.?:thefrtcnetdt

U.TC[11 BASE ** EXPONENT.rC(1],

te. thtteei0)te curc rsedavnaet

b IFne NOT ITatn BDEST COST- (EXPONENT THENg BEGIN
Iecus the? (BASE is 0.0 onetdoaitra

THEN BEGIN
WRITELNi

WRITEIN ('ERROR IN INTERVAL *0 ITAYLOR: SBS <- ZERO);

SVR (0) (0RETURN TO OPERATING SYSTEM 0

EN (* 'THEN 0

ELSE IF (lisr (BASE) - 13WP (BABE)) AND ( BASES 1.0 0

(ZINF (BASE) - 1.0)
THEN U.TC1hJ a. NTPT (1.0)

-so

-60-a



wLig 8110"
LOG BASE t- ILM (BASC)
FORi- Kt- 2 T'O U.LUUTU DO

RATIO Xl WTVT (K- )
POPR 1 2 TO K DO

IEGIN

X(INDEEI s- E3DONENTTCEI (J7 1) P ATIO
EUwi (* FOR J *)

U.7CIKI s- LOG BASIC' ISCALF (U.TC, I, K)
3MW (*FOR K)

330 (* ELOE
Eowl (* IF)

RICH I- U
330* ( INTERVAL 0* ITAYLOR *

OPERATOR" (BASE* UPOIS ITAYLOR) 335 I ITPJI.OR: IT 1?T'
(0Raquires XT*"Z 10*X, 1 I, K"!I, I*K, K**K,

ITI5, ITES", ITSQR, I'IT, IT*ITp
XVRMULL, ISCALP, IT 1033!' CONSTANISTI)

VAR Us ITAYLORP

BEGIN
IP IT IDhWI CONSTANT (EMOMENT)

isE= a -I- BASE ** EXpoNENT.Tc(1I ( Use ITAYLOR INTRVAL '
ELSE IP IT IDINW CONSTANT (BABIC)

THEN U 3- BBE.TCt1i ** MOMENT3 ( Use INTERVAL 00ITAYLOR *

31.83 IF 1137 (BABI.TC111) <- 0.0

WRITELNS
WRITULS ('ERROR: ITAYLOR BABE <- ZERO') I
SYIR (0) (0RETURN TO OPERATING SYSTEMS'
END (* THEN '

IFBAS.! 00 Z1P0333!.?
THEN BEGIN

WRITBEWI
WRITE ('ERROR:s 0* OF ITAYLOR VARIABLES WITH')#:
VRZTEWK V UNEQUA SCALE FACTORS'):

mY (0) (* RICTURN TO OPERATING SYSTEM'

U a XPONENT 'ITLN (amE)I
U s- rTEIP (U);
ENDo (* ELE *

3163 (* ITAYLOR 00ITAYL0R

EN3UD Or IT-POW.LIB )110X >>) 0)I>> >>>
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c.6. Reg3 ana interval Taylor Functions.

( RIT rKSLXD - MUAL AMD IWURYAL TAYLOR FUNCTION$ ((((((

Contents:
TSQRCT) FUNCTION MUR CTo TAYLOR) i TAYLORi
TSQRTCT) FUNCTION T9QfT (T: TAYLOR) i TAYLOR:
TRIP CT) FUNCTIO T3XP (Ti TAYLOR) iTAYLORi
TIM(T) FUNCTION TIM CT: TAYLOR) i TAYLORP
" IN COO PNCUUU T BIN C06 (To TAYLORI VAR 8, Ct TAYLOR),I

TBINCT) FUNCTION 1113 CT: TAYLOR) i TAYLOR;
TCOSCT) FUNCTION ICOS CTo TAYLOR) i TAYLOR;
TRUNGNCT) FUNCTION TRUNOR CT: TAYLOR) : TAYLORS
TARCTAM(T) FUTNCTION TANCTAN (To TAYLOR) i TAYLORY
ITIUCT) FUNCTION T (T: TAYLOR) i TAYLOR#
TDIFFCT) FUNCTION TDIrFV (Ti TAYLOR) t TAYLOR:
TINTGILCT) FUNCTION TXWIGE. CTo TAYLOR) a TAILOR,

ITSQAC IT) FUNCTION ITEQR CTo ITAYLOR) : ITAYLORS
ITSQRTC IT) FUNCTION ITSQR! CTo ITAYLOR) v ITAYLORI
ITXXC IT) FUNCTION MTUI (T: ITAYLOR) .: rITLORi
ITLNCIT) FUNCTION 1113 CTo ITAYLOR) i ITAYLORr
IT BIN C06 PRCEOURh IT BINf COO (T: ITAYLOR: VAR S. Ci ITAYLOR),

iTSIUC T) FUNCTION 11511 fTa IT&YLOR) - ITAYLOR;
ITOOSC IT) FUNCTION ICOG (T: ITAYLOR) S ITAVLOR,
ITRUNGVCIT) FUNCTION ITRUPGR C? TX ITLOR) a ITAYLOR
ITANICTAN(IT) FUNCTION ITANCTAN CTo ITAYLOR) a ZTAYLOR#
ITTAW(IT) FUNCTION II'IAN CT: ITAYLOR) a ITATLORI
ITDIFFCT) FUNCTION IYDIFT CT: ITAYL0R) a ITAYLORi
ITINTGRLCT) FUNCTION ITINTORL CT: ITAYLOR) a ITAYLORv

FUNCTION TSQX CTo TAYLOR) a TAYLOR; C' 1QRCT) '
C* Requires: VKNULL, SCALP. UQR *
VAR 1, J, 1, HALF: DIYXPRI

X, Y: RYRCTORP
U a TAYLOR,

X :- VRNULL; Y t- VRllULLr
U.L3NGT g- T.LUNNTU
U.? t- T.T;
U.T0 s- VWIUIL;

U.TCEI1 8- BQR CT.TCII)l
I!11 : T.TCCII,
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POP. X so 2 TO Q.L3160TS D0
SWIMW
zKxKI- a- 'CIKX
RALF so I DIZV 2)
FOR J so 1 20 NALF DO

swig3
I I- K - j + Is

U.TCJj #- 2.0 * SCALP 1 . Ve0)
IF K MW0 2 -1 THXN

321.1s- HAWF + It
O-fciKJ2 a- ITC[KJ SO3R ( !.TCIUAL))
swD t*i

T6QR a-
EN0s ( FDCTION T8QP (TAILOR) *

FUNcTION MRA (It TAYLOR) 3 TAILORt ( T (T) 0

(* RequIrems VWUL, SORT, 99R, SCALP *
VAR to K, 13032, 13012s DINTYPE:

RATIOs RNMi
K, Y %WICTORI
u TAYLOR;

Ir (T.TCIl) ' 0.0) OR
((T.TC[1J - 0.0) AM (?.LUN3 ). 2))

WRITNI.Ni
VRITEZ* OUPER20 99UARZ Or'F0 TAYLOR W.A3L3U -C HERO.'):

M7 (0) END, RUTURK VTO Op3RATZIw BySe=

U.LBWGTH so T.LNlSGT~x

U.TC111 %- SWR (T.TC(1J)p REL 6)

PATIO a- 1.0 I(2.0 *U.TcltI);
U.TCt21 sa T.YC(2J RATIOP

IF U.LBNG' )- 3 TRW3 BEGIN
U.TC131 a. (T.TC131 * Ql (0.TC121)) P ATIO#

ij,
493



FOR W : 4 TO U.LENQTI D0

IF X HD 2 -0
THEN SEGIN

INEX IW DIV 21
IWDX2 aINDEX - Ig

X(rwoX21 s- U.TC(INDZXJ
END (* TRW *

ELSE BEGIN
INDEX s- (K + 1) DIV 21
U.TC1K] SQR (U.TCEINDEX])

zgn: (* IF

DEGIN
INDEX K K-Il

ENND FOROI *

U.TC(KI a(T.TcEKI - U.TC(K] 2.0 'SCALP (X, Y, 0)) *RATIO

END I' Z U.LBNGTH ), 3 )J
ENDi( IF U.LENGTH >- 2

TSQRT sU
END: C FIJNCPON TSQRT (TAYLOR) )

FUNCTION TEIP (Tt TAYLOR) s TAYLODR;( TIZP(TJ '
C aquirec. vRNuLL, SCALP

VAR J, X, INDEXs DINTYPE;

RATIO: REALI
X 3 RVECTOR:
u : TAYLORI

x s- VIMNULLI

U.LENGT :- T.LENGTU,
U.T t- T.Ty
U.TC t- VRNULLi

U.TC(1] I- Up CT.TC(11);

FOR K t- 2 TO U.LENGT Do

RATIO t- 1.0 / (K - 1),
FOR J :- 2 To K DO

BEGIN
INDEX I- K - J + It

XEINDE] I- T.TC(JJ0(3-)0 RATIO

ENDI (* Pon j )

U.Tc(KJ I- SCALP (U.TC, X, 0)
END: (* FOR K 0

END: C FUNCTION TXUP (TAYLOR) '
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FUNCTION TIM MT TAYLOR) aTAYLORS 'UUT
(* Faquireuas YInWL.o LU SCALP
VAR J7, 1, INDEX a DINTYPS1

RATIO, RAT12o REALo
x 3 RVNCTORI
v s TAYLOAJ

IF ?.Tell] <- 0.0

vuITULM c'u.,OR8 r TAYLOR VhAIL <- 3ERO')l
SYR (0) ElDa C RNTURN TO OPERATING SYSTEM )

s - vRMUmx.
U.LaNOE T.LUSGTHO
U.? ?m .?I
V.V T m VNUVLLP
U.TctI) a L (T.TCrU1)?
RATIO m1.0 / T.TC!Ila

IF u.LENGT >-o 2 TEEN BEWIM
U.TC121 s- T.TC121 *RATIOS

FOR X s 3 TO U.LENGTH DO

RT2 m1. 0 / (K )
FOP J7g 2 TO K-1 DO

INDE= . + 1
XtXwouX) g- T.Tc(jI So (INDEX -1) *RAT2

Enos (* FOR.?'*)
Ur.Tctgj c- RATIO S' (T.TCIJj - SCALP (U.Tc, X, 0))
aND (* FORKI

.4 END: (' IF U.I.3NGT 0 2'

TINTIO Ts- )

PROCEDURE T BINCOG (Ts TAYLORs VAR 8, Ca TAYLOR)# "i cooSN 06
(0 quiress VUNULL, SIN, COB* SCALP *

RATIOS REAL p'.1 1 RVECTR#
I i VNu1LL,
S. LEONU- T.LUNGTE:
o.? a T.Tr
0.11C 3mVNRLI
$.TCOtJ SIN (T.TCflJ)
C.LRNGT * T.LUSGTU,
C.? a- T.To
C.IV a VNIULLP
C.TCCI s COG (T. 'C11)I
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FOR K a 2 TO T.LINGTH fl0

PATIO Mm 10/( )
F=R. 1 2 TO I DO

TUU aX - .7 + I
IfUII I- TcIJ3 W . - 1) M ATIOS

USWIC FOR j70
3.TC(KJ a SCALP (C.TCe If 01a
C.fc(KJ, SCALP (B.TCl If 0)
MW;a (* FOR K *)

UNDI (* PRDCUDU TIN COB 0

FUNCTION TSXU (Ts TAYLOR) s TAYLOR# ( TBAU!) 0

(* Paquiress VPMULL, T SIXCOB, 81N, COG, SCALP 0

VAR 8, Co TAYLOR:

T INO C(T, so C):

ZXc, (0 FUNCTION ?SIN (TAYLOR) 0

FUNCTION TCO8 MT TAYLOR) a TAYLOR: 0r() 0

(0 quiross VRUUIL, T 8ZUCos, SIR, COS, SCALP 0

* VAR 8, Cs TAYLOR:

B3015
T(NO T, 5, C):

TO t C
IKsO:( FUNCTION TCOS (TAYLOR) 0

FUNCTION TUMO (Ta TAYLOR) 3 TAYLOR: 0TORIT

(0Requiresa K/T. TSQR
VAR Vi TAYLORs

31013
U s- MSR (T) i
U.TcrlJ 3- U.TCEII + 1.01
U &- I / Usi

ZWIlpTRUNG 

FUNCTIO TANCTR (Tt TAYLOR) I TAYI:( TAUCWTA() 0

(0 Rquires a VPNUfLL, In#S! K M, hR* AUCTAN. SCALP )
VAR J, K, 1303t DIMTYP~r

RATIO: mERLr
I aEvUCTORl
0, V aTAYLOR:



t--!~9 ()

FOP! X 2 TO U.LG!U DO

PATIO 1- 1.0 M K- )
FOR J a- 2 T0 9 DO

swig3
INDEXD t- X - j+ 1;
x(xuIxJ r- Y.10[J] W 6 - 1) *RATZI

U.2C[KI a 3011. (V.TC# 1, 0)
WADI (* FRc X *

TARCTAN s- V
330: 10FUCTO TANCTAN )

UNOCTION 11AM (To TAYLOR) i TAIRs (0 ANCY '

(a Faquireat VENULL, T/!, TiUCOU, come5 s*)
VAN 3, Cl TAILOR#
SWIM3
TSIUCOO (T. as CMi

ITAN S- a / C
SU~ (* FUNCTION ?TAN '

Fu 09NK. p CTo TYLOR) aTAILORs ( 1IMFT) '

RATIOS RZALI
u TAILORS

BEGIN
U.? Iem T.TI

Ir T.L3NG'I - I Tum

U.LOT Ime i.UNtU-

SATI a .0/ .T

FPOR K sa 1 20 U.LIN DO
BEGI3

0.10(31 ra T.!CIIDDI RATIO 9

16 ( was'

TDIFF see U
3SD; (9 FUNCTIO 10FF '
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* FUNCTION TINTGRL (Ts TAYLOR) aTATWORg TINTGRLMT
VAR K, INDEXv DXWIYIZg

U a TAYLOR#

BEGIN
IF T.LXNGTH < DIN THEN IJ.LINGTH T.LZNMH I

ELSE U.LNUGN DINI

U.Tct11 1- 0.08

FOR K a- 2 TO U.LENGTH DO

INDEX irn I - Ig
U.TC(K1 i- ?.TCCINDEI T.T/ INDEX
EUDO (* FOR X.*

TINTGRL a- U
END# (* FUNCTION TINTGRL

FUNCTION ITSQE (Ta ITAYLOR) v ITAYLORSC ITBQR( IT) )
Pa quirosa IVRNULL, 1801, ISCALP *

VAR 1, J, K, HALF: DINTYPE:
X, Y: IVECTOR,
U a TAYLORI

U.LWNGT t- T.LENGTHI
U.? :- ?.?I
X :- ZVRJPJLLI Y - ZYRULL;
U.?C t- IVRMULL I
U.TC[1 a- IsQA (T.TC[lJ)1

* 4. 111 3a T.TCC111
FOR K t- 2 TO U.LENGTH DoI X(KJ T.TC[KJ,

HALF aK DIV 21
FOR J I To ALFPDo

I t- K - J7 + Is
YCJ a T.TC[Ij
END$ ( FOR. J)

U.TC(R] ,2 * ISCALP ( X, Y, HALF),
IP K MOD 2 - 1 THEN

BEGIN
HALF s- HALF + 11
U.TC(KJ9a U.TCCK1 4 ISQR (T.TCCHALFI)
E3ID (* IF)

ENDI C* FOR K)
ITIOR a- U
END; FUNCTION ITIQI (ITATLOR) *



FUNCTION l!UQR MN ITATLOR) a ALOio I!IQW( IT) *
(* ~qw1tea a Z MIL ISQAY, MI 1033!OESTANT( IT).

ISQI. X1CM.? *)
VAR X, 1, INDEX, 11102a DIMW i

PATIOS IMMMRALl
X, Y IVUCTORI

5313 fya

IF (1131 (T.TV(1 ( 0.0) OR
((IN? (!.Tclil - 0.0) AND (T.LWGE M 2)1

WRITEZIi
3f1T3IM ('33MR, SQUARE BOOT OCU ITATLOR VARIABLE <0 3130.' )
BVi (0) jmC RETR To OPERATIwNG TSTR
E* LSE *)

xI-a IVrNruLLl Y I- IVRUI
U.LE3GT c- T.LEISGTH?
u.? I- T.To
U.Tc I- IVUSULLI
U.1C(1I f- ISORT (!'.TC[1), ( INTERVAL 0

IF NOT IT EDENT CONSTANT (T) THEN 3361
RATIO j- 1 / (2 * D.TCMtl

IF MaLUo= )- 2 TVZ BEGIN
U.VC(21 i T.TC121 * RATIO$

IF O.L16'U 30 3 TIM fi3613
U.YC131 s- (2.TCI3I - 1503 (U.Yc121)) *RATIOF

FOR K :- 4 TO U. LENGTH 00

IF X MW 2 - 0

11103 K DXV 2y
13012 a-INDEX - is
XIINDX21 t- U.TC(INDI
360 (* THENM0

INDEX- (K + 1) DIV 21
t1.TClX) *m R (U.TC[INDEXJ)

FOR I s ITO 13012 DO

INDEX I- K - It
Y111 t- U.TC(INDZZF
WWI~ (* FOR I *)

U.cC(KJ s- (O.TCCKI - 2 15011.? (2, V. 13012)) *RATIO
E3D (FOR 9

END (0IF U.L6U- 2 *
3303 IT HOT IT-IDS3 CONSTANT (T)

IT9ORT a- U
33DI r FNCYIK ITOQRT (ITATLOR) 0



rUNC!IOII ZTMZP (Tsa ITAYLOR) s ZAYL4DRg ( I'NI(Z) )
(* Requiross IZYUIL. ICAID *

VAR J. K, D6D=a DZUTTP;
RATIO& XNMlRLI
x I XVBCTORI
U s ITAILORD

BEGIN
K a IVRIWLi
Q.LENQTU i T.LENOTUU
DU.T :-T.T1
1.10 s- IERULLP
U.TC(l] :- XUP (T.TCOtj)

FOR K to2 70 .LNGTEDO

RATIO : /IN??! MK M I)
rOR J a- 2 10 X DO

BEGIN
INDEX I- K - J + I
XIHDEX] I- T.TC(J1 * (J 1 ) *RATIO
NMI (* FOR 3 0)

L.TC[K] S- ISCALP (U.TC# X, K)
ENws (* FORK)

FUNCTION ITEM (Ts ITYLOR) t ITAYLORs to TL( T) '
C'Re(uires rYRW=L, IL?, ISCAL?

VAR 3, K, INDE9X a DXNTifl
RATIO, RhT12: INTRVALi
x IV7CTOR:

THUN BEGIN
"MuXTpN
WRfTLNU ('ERROR: IN OP ITAYLOR VARIABLE <- ZERO.'),
SVR (0) END; (0 RETURN TO OPERATING 981K)

(0ELSE 0

I s- rVRNtIJL
U.LGTN a- T.LITU
U.? i- T.Ti
1.20 a-xvNIOL
U.TC(1I s ILK (T.TC(1J )i
RATIO s- I / T.TCC~lr

iF U.LENGTU )-- 2 TEM ENGIN1
1.TC(2J a- T.TC(21 0 ATIOi

-to-



FOR x a 3 20 U.LUU!3 DO

PATZ2 I / 11991 (K I)f
VOM J 2 TO 9-1 D0

F3 I 1-K - j7 +It
XIZNDWh #- Y.1CIJ3 * VATY2 (IER - I)
NMI I* FOR . *)

U.TC(K) s- PATIO* (1.10(1 - ZCMD (0.I0. X, K))
NE (* POP X

BND, (* I? u.LZaini 2 *

IFE

PNOCZDURX 223M CMN (Ts IZO&I~ VAR So Ce XTY&IW) I IT 112 003oo
C* Seqvrees IKYULL0 1613, loon, ICALD'
VAK . to INDEX DINTYPSY

PAYOINEUAN

X am ZYIULLI
B .LRiSUI s- 1.Z.IM

6.20 s- ZIWUMLLi
* .10(1 f- relax (1.TC(13)I

C.LRWWE s- T.XW
C.? 1.1
C.1 2t IZYNWLLI
C.T11[) ICON ('1.YCIII)i

WoK 1I t-2 TO T.LUI 00

~T RARO rn IN 311 (K - 1),
WOKS Jin v-2 O DO

INDEX 1- K - 14+ IF
III DUX1 11 1 .110(j) * NAIZO 1 )g

B.TC(KI am ZCAL (0.20. If K)g
C.TC111 un ZCAL (1.10. X, K)

ADI (* PUOUDI *12306*

Mo (*pOOUS" i-o

VUNCTZON MI3N (?I IYATLOR) I IATLOs( 212(2)I
I* bqIonees ZYIJFLL, ZIUI 006. Cos,3 tax,0IN ZSCALIP

MIN 3,C YAL6

330: C' NCYON MIN1 (zyTMOR) C



FUNCTION M!O6 MTa ITAYLOR) s TAYWRi (CICOs(IT)

(Requiretw: IVRMULL, ITSINMCOO, 1813m. ICOG, ISCALP '
VAR 8, Ca ITAYLORI

33013
rITSIRCOO (T. S. C),
IIEOB 's C
BAD: (* FUNCTION ITCOG (ITAYLOR) '

FUNCTION ITRUNG9 (To ITAYLOR) s ITAYLOR: ( ITRIMNWIT)
(* Requirea: IVIT, ITSR *
VAR Us ITAYLORI

U.TCEI :-U.TCE1] I

TRUNGE V
3RD, ( FUNCTION ITRUNGI *

FUNCTION ITARCTAN (To ITAYLOR) 2ITAYLOR; ( ITANCTAX(CIT) 0

(* Requires: IVUSULL, ITRUMGE 1K/IT, ITSQR, ZANCTAN, IUAPR
VAR J, K, IND3X: DINI

RATIO: IN4TIRVALr
x s IVZCTORI
U, V I IfTYLOR:

3UGIU
x 3- ZYRNULL#
U.L3gTN T.LgNOtN
U.T aT.T,
U.TCrII t- ZAMCTAN (T.TCtl)i

(* Generates error if ADS (T.TC1t]) .1.0

V s- ITINSG (T);
FOR K s- 2 To U.L3ST DO

RATIO : I INP (K- i

FOR J 2 TO X DO

X(INZ i- T.Tc(Jj * (J -1) *RATIO:

gNU: (* FUNCTION ITANCTAN *

FUNCTION MTAN (To ITAYLOR) s ITAVLOR: C ITTAWCIT) *
(* Requirs IVNIUIL, IT/IT, IT 819COS, IUCAL.P )

VAR U, Cs ITAYLORa

IT 81N Mo CT6, C),

UN~a FUNCTION MTANI*

4.2



FUNCTION ripztr (Tt ZTAYWRM) i ITAILORi (' Tovr( IT) *
VAR K, IXDZXs DITYPRI

RATIOt IMTRVALI
U v ITATLORs

O361W
U.T t- T.Tu
IF T. LENGTH - I THlE

U.L3umT Is
U.TC(IJ :0.0
lEND (t THEN '

U.LUSMt T.LWGTU - 11
RATIO I / 1NMY (T.T):

FOR K I TO U. LENGTH DO

INDEX t- K + IS
U.TCCKI s- T.TCCINDXI RATIO' K
3110 (' FOR K'

ITOiFF v
31N: C FUNCTION MTIFF '

FUNCTION ZTINTGRL (Ts ITAYLOR) a ITAYLOR: C'ITINTGRL(IT) '
VAR K, 111031, DDWTP3

RATIO: !NTEVAL a
U aITAYLORy

IF T.LNPGTN < DIN THEN U.LEIEGTI s- T.LENQTH I1
3EL83 0.1.33TH t- DIN;

U.? t- T.Ti
U.Tc(i] IN4TPT (0.0)i
RATIO a-INTPT (T.T)i

FOR K s- 2 TO U.1.311011 DO

INDEX I. - 1
U.TC[KJ v-n ?.FCCIWD3KJ *RATIO INDE3X
ENDS (* FOR X '

ITINTOUL i- U
ENDS (* FUNCTION ITIMTGL '

CEND OF RI? 1113.1.1 >>> >>> '>>3,>)>)O.>>,,>O>>>
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C.7* Utility Vintiooe. and ftooedutee.

('U!IL.LID - DlLM? 1MCNDUM3 FUEC110

coutentes

113011CW ZVULL i X30!OMe

IWCTIOA " DUVI 5330M (To VTLOR) i 3001.33Mg
113011 11 YIOWUM (o ITAMO) i OILM

lUmvialW IT' 103 CONSWl! (Ts IVUTM) I 300M.~
a %-n Cn -. W iUM.A (XI: UYILAL) r
PuOCUM M11211 IVIENYAL 8=310 (333 XUTLOE)o
Me==03 DA l=LIVIEKYAL M On13 (I s 111110)i

?UOU IMDI! (F a ITAILOR) TMOAL01

4 VUEC!ZOU YEUVULL i WUCTOSi
VIR Is DIVIWUJ Us RVUCYWI

MOR I s- 1 10 DIN DO Utz? 0.
MEULLaO

* ENMD: FUNCTXOM VIONIL

FUNCTION XIUWLL i IVUCYOMg
VAR 1: DIN!TEMI Us IVBCTRi

MR3 139-1 TO DIN DO DCl)I- XVII! (0.0)1
ZVUSULL :- U
END: (* FUNCTION ZYRL )

PUNI YIDVI 33 (To TAILOR) i DoocLm
C* tKIti the series Is Identically equl to mera

VAR Us NOOiZaM

K,,
wam M (1 ?a.TUim) Am (a) Do

urns [K 0 031.0 fm131)F

N U

urn, (0 1101W 10SUM3O )
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wwMMIC11 Tim OCUAI (t:VVW) s 9gaIE,

(* -6l it the "tes Is i6mostloall equal to sa oestavt *
VAR Us 31009BA111

WunLZ (X <- Y.LUUN) AND (0) 00
3M0111
IF !.Ic(KI 40 0.0 ISM U $- TALMO

MD a. * gu

Irmoweomu A fa- tuw-ou

WI0e ( MW1 (11D 0IU0 1! )1

Wa 153 f the xusd. Is Idetically equal to zeo
VAR Us 5100L353

33118 (K 4( T.L1353) ANm (01 00

IF 1.20(m 3 0 INT (0.0 FWUAS118
X s- X* +

D:r (* 3318 0

IT DM MW -CO ITII NO Ials

FUCY 11*JWN003113 (To nTATLO) a 31 53:
THU T36 1 the series is identically equal

to a ocfatat Interval *
VAR Us DOOZ.wls

Uman

3311.3 (K (a- T.LUN53) AND (U) DO

IF 11 - TALMO

= D (* I 31 rt*) -a m ZT )*

335 C'10110 I WR Int WIRM)a~ I1115

won( vv zaawoi vzjinw.w,



rnocamNa nuuziwuuvazuu (oma IvanoR)u
Van Is DD I

FOR I I- I T* MnAU i D0 asWSE
33113 (184,

VAR Is DIETIlg

READ (DAA, V.Y)o
331131 (0601L 1P10M1', P.?)l

IPOR I W 1 20 P.IUWN DO INSAD (DATA# P.10(ZI)
331131 ('13313 FME 711)l
WRITE ('EV~jm MUCDR EDINEVL333 )

VAR Is DDP I~

FM I s-1 0 .LUOY3D0
4 3IM3I (13 4, ' '. ?.10thl)

IMFg (* PROCUDU3 WITS 133133

VWNMC USIDPY (P a ITWTUR) i YATW~lk
VAR Is DZNIIPo Us TAIWRi
swSim
U.? I- P.Ty
U.L s- P.LZt~
POE I t- 1 10 U.LUVW DO

5.10(11 I- (lIX" (7.20(113 IBM? M.1E11) O.Sg
1131DM 0
NDI (' CYION flIDPT )

ROD OFOP-LA-



APPUUDZZ D

user Manual for muuSOLv and za" q.OS.Lv

2his ftwoudix to addressed to readers with &cces to Pascal-me who wish to

use the progress MN.SOLV and XMLPSV to explore the solutions of initial-

value problems for ordinary differential equations.

I hee progre allow direct user interventic in the selection at the

integratioa stop *I** at each step. he uch, they are qut* stefl for hands-n

exploration, but they are not intended to serve as general purpose solvers.

SThe Illustrations gives here are for the Pascal-C ompiler for the zilog

3O operating system and Its text editor. Users with the Nilog MCI-I

* miroccuter coan dtain the software described in this report by sending a

hard-sectored, single-sided 8' flopy disk to the eoond author. The directions

gives here will apply with only minor modifications to the use of Pascal-C

compilers for other system.

Sta I. Create the source progr m.

D!T Nub. a

an! FOSLOV. a or XON_0ZV. U

CMW mzau s- to the expossion for the equation to be solved

AMpaeo the source code for the 5WG (ITIS) operator by the operators

ad functions needed to evaluate the expression in you eption they

are obtaine from -. 13 as needed. mnny operators call other

Opersater. Which must also be Included in your soore oode. time calls

-97-



to the basic Interval operatere are already included In the beadimg

of logo S0I,.

he process of assembling all thegocesary" -wr toi the ernest a an is

rather tedious and error-proms be patient and careful. a good library manager

would be an asset.

stay 2. Comile.

Por WUQ301V, a" I OW I""t~ US3

For XDJL V& usel OW I""ru Lis

Step 3. *if the compiler detects errors. for exmple, an eitted

subroutine, then edit Nyprcb.i again and recompile.

Stop 4. If you wish to reed Input data from a file instead at the console,

then this file must he crested. 2be Initial value of X and V awe reed fromi an

external file which am be nmed as the wer chooses. Nyprog.DAT will be sed

here for Illustration. Output can also be directed to em external file Instead

of the console, for exlee to Hyprog.O0Y.

Step 5. Ron.

For Input/output using the terminal, we

XQP ifyprog 9003 900 900



101 Inu fic rn jow.D& o l en A to the to~aial. us

XV ftg909 ft= NSVXVV.DAY MW

Vrow Input twIV Uypeo.DhT end output to Ngpuog.OW.0 we

ZQP NWzog *C UypOgDh? RwapgOfe

2hose powes (especially RUIMN) am take a tew @dute@ to coruts, the

sewiesm latica an the USO system, ao yu should be petleat. nos eutbs hae

found these programs very~ matul as tools5 to quatify suspected astantwoghLe

cancellatios Instabilities In the gmmwatlina of Uylog sies~m solatione.



SECUE?? CLAINPICATION OF TINS PAOE Do" bo*

REPORT DOCUMENTATI PAGEIt

# 2497
4. TITLE (ad bHNiO L TYPE OF RgPONT G PCmoo Cov9MMM
AUTOMTIC GNUEATION OF TAYWI SBRIES IN Summary Report - no specific
PASCAL-SC: BASIC OPERATIONS AND APPLICATIONS TO reporting period
ORDINA DIFzRUNTIAL EQUATIONS 6. PuAronme ofle. REPOT NUmeSR

7. AUTHOR(o) s OTRACT OR OMA14T ,wUNGER.j

George Corliss and L. B. Rail DAAG29-80-C-0041

t. PERP*RMING ORGANIZATION HAWS AND ADDRESS0 ft JAE.MIL RJC.TS
Mathematics Research Center, University of Workn t %= "
610 Walnut Street Wisconsin Nunerical Analysis
Madison, Wisconsin 53706 I
II. CONTROLLN OFICE NAME AND ADORES II. REPORT OATE
U. S. Army Research Office March 1983
P.O. Box 12211 IL HUMRN Of PAGES
Research Triangle Park. North Carolina 27709 99
14. VOKITURING AGEICY WMlE 0 AORSNIM OdW burn Coeffft 015..) IL SECURITY CLASS. W .1 ml.net)

UNCLASSIFIED
Is& rMOkJSICATION10011HSRAING

to. 0S8tRIUTOwSTATMU(SIAWle
4•

Approved for public release; distribution unlimited.

17. G0ISTISUTION STATVMNT (*#M evm mdho We 2h, f JdffN-mt *m RoqtJ

IS. SUPPLEMENTARY NOTES

"I. KEY woRnS (Cautlo. s id tosuos fM anme.. d #~i.Afp bF SshonS.,)
Taylor series error analysis
recurrence relations for Taylor coefficients interval arithmetic
automatic differentiation
numerical solution of ordinary differential equations
stability

2LASTRACT (Cmmil.. " osmee .lb N neees mE #~Ist by sl fosh~
Taylor series have a long history of usefulness in numerical analysis,
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of ordinary differential equations. Since recurrence relations for

coefficients of Taylor series are well known, it is possible to autemate the

camputation of aithostic operations and various standard functions with
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20. ABSTRACT - cont'd.

arguments which are themselves series. If the language used for scientific

computation suppozts user defined operators and data types, then the

facilities built into the language ccopiler itself can be used to generate

machine code for the evaluation of Taylor coefficients. Examples of such

j languages are Pascal-SC, Algol 68. ard ADA (a trademark of the U. S.

Department of Defense). Pascal-SC (Pascal for Scientific Computation) offers

the user highly accurate floating-point and interval arithmetic, the latter

being useful for automatic computation of guaranteed error bounds. In this

language, series with real coefficients are introduced as type TAYLOR, and the

"f corresponding series with interval coefficients as type ITAYLOR. Source code

*1 is given for the operators +, -,*, /, ** and the functions SQR, SQRT, EXP,

SIN, COS, ARCTAN, and LN with arguments of these types and some other useful

functions and procedures. Integer, real, and interval constants are also

allowed in TAYLOR or ITAYLOR expressions. Suggestions for the implementation

of additional operators or functions are given. An application of Taylor

series and the methods of interval analysis to the solution of the initial
value problem for ordinary differential equations is made using types TAYLOR

Jand ITAYLOR. An analysis of the stability of this method is made, which shows

* that the recurrence relations for generation of the Taylor series for the

solution exhibit a mild instability which has no significant effect on the

values of the solution computed by analytic continuation.
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